Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

980 results about "Oleylamine" patented technology

Oleylamine is an organic compound with a molecular formula C₁₈H₃₅NH₂. It is an unsaturated fatty amine related to the fatty acid oleic acid. The pure compound is a clear and colorless liquid. Commercially available oleylamine reagents vary in color from clear and colorless to varying degrees of yellow due to impurities. The major impurities include trans isomer (elaidylamine) and other long chain amines with varying chain lengths. Minor impurities include oxygen-containing substances such as amides and nitroalkanes.

High-yield preparing method for inorganic halogen perovskite fluorescent quantum dots at room temperature

The invention discloses a high-yield preparing method for inorganic halogen perovskite fluorescent quantum dots at the room temperature. The fluorescent quantum dots are CsPbX3, wherein X is equal to AxB1-x and is larger than or equal to 0 and smaller than or equal to 1, and A and B are any one of Cl, Br and I. The method comprises the following steps that firstly, lead halide and cesium halide are dissolved into dimethyl formamide, surfactant oleylamine and oleic acid are added, the mixture is stirred until complete dissolution, and a precursor solution is obtained; secondly, the precursor solution is dripped into a poor solvent at the speed of 0.08-0.13 mL/s and stirred evenly at the uniform speed, and the inorganic halogen perovskite fluorescent quantum dots CsPbX3 are obtained. The preparing method is implemented at the room temperature, protection gas is not needed, equipment is simple, mass production can be achieved, and full visible light band shining can be achieved by selecting halogen and adjusting the proportion of halogen. The full width at half maximum of the inorganic halogen perovskite fluorescent quantum dots prepared through the preparing method ranges from 16 nm to 39 nm, the fluorescence quantum efficiency is close to 90%, and the inorganic halogen perovskite fluorescent quantum dots can be stably stored for more than three months, and can be used in the field of solar cells, lasers, light detectors, light-emitting diodes and the like.
Owner:NANJING UNIV OF SCI & TECH

Preparation method for doping type four-element multicolor fluorescent Ag-N-In-S quantum dot

ActiveCN103265948AControl glow colorMeet the marking requirementsLuminescent compositionsFluorescenceSolvent
The invention discloses a preparation method for a doping type four-element multicolor fluorescent Ag-N-In-S quantum dot. The preparation method comprises the following steps: (1) adding AgNO3, InCl3, ZnCl2, oleic acid, dodecyl mercaptan and a solvent--octadecene into a reaction vessel so as to obtain an Ag, In and Zn mixed precursor solution; (2) adding powdered sulfur into oleylamine and carrying out heating to allow the powdered sulfur to be fully dissolved so as to obtain an S precursor solution; (3) heating the Ag, In and Zn mixed precursor solution to a temperature of 50 to 70 DEG C from room temperature and maintaining the temperature for 10 to 30 min under the protection of argon so as to remove air, then heating to a temperature of 150 to 200 DEG C, carrying out stabilization for 1 to 5 min and then injecting the S precursor solution, wherein a mol ratio of In to S is controlled to be 0.125-0.25: 1, and a reaction lasts for 5 to 90 min; (4) taking a sample and dissolving the sample in a hexane solvent so as to obtain an Ag-N-In-S quantum dot solution; and (5) adding absolute ethyl alcohol into the Ag-N-In-S quantum dot solution obtained in step (4) and carrying out centrifugation so as to obtain the Ag-N-In-S quantum dot. The preparation method provided by the invention is simple and convenient, and Ag-N-In-S quantum dots with different emitting colors can be obtained by doping zinc and controlling doping concentration of zinc.
Owner:WENZHOU UNIVERSITY

Copper sulfide/mesoporous silicon dioxide core-shell nano material as well as preparation method and application thereof

The invention relates to a copper sulfide/mesoporous silicon dioxide core-shell nano material as well as a preparation method and an application thereof. The chemical formula of the core-shell nano material is Cu9S5/mSiO2-PEG. The preparation method comprises the following steps of: (1) raising the temperature of oleylamine under the protection of nitrogen; adding a mixed solution of copper dibutyldithiocarbamate and the oleylamine and dispersing the mixed solution into chloroform to prepare a D solution; (2) dissolving a surfactant into water; raising the temperature and adding the D solution to prepare an E solution; and (3) taking the E solution and adding ethanol; raising the temperature and adding an NaOH solution; immediately adding TEOS (Tetraethylorthosilicate) and reacting; adding PEG-silane; continually reacting and carrying out hydrothermal reaction; and adding into a scrubbing solution to centrifuge and wash to obtain the product. The copper sulfide/mesoporous silicon dioxide core-shell nano material is applied to near-infrared photo-thermal treatment, anti-cancer drugs, chemotherapy of tumors and infrared heat imaging. The nano material disclosed by the invention has very low cell toxicity and very high blood compatibility; and the united effects of thermal therapy and the chemotherapy are good.
Owner:DONGHUA UNIV

Organic solvent-water heating method for preparing football-shaped mesoporous BiVO4

The invention discloses an organic solvent-water heating method for preparing football-shaped mesoporous BiVO4, comprising the following experimental steps: under the condition of stirring, bismuth nitrate and ammonium metavanadate are dissolved in a mixed solution of ethanol, ethylene glycol, nitric acid and laurylamine (oleylamine or mixed liquid of oleylamine and oleic acid); a sodium hydroxide (2mol / L) alcohol solution of ethanol and ethylene glycol with the volume ratio of 1 to 1 is used to regulate the pH of the solution to be equal to 1.5-3; the mixed solution is transferred in a stainless steel self-pressing vessel (the volume filling degree is about 70%) with a Teflon inner liner and is put in an incubator to carry out organic solvent - water heating treatment for 12h in constant temperature of 100 DEG C; and the mixed solution is naturally cooled to room temperature after taking out. The obtained product after the organic solvent - water heating treatment is filtered, is washed with deionized water and absolute ethanol and is dried for 12h at the temperature of 60 DEG C, and then football-shaped mesoporous BiVO4 micron particles with a monoclinic scheelite structure is obtained. The porous bismuth vanadate obtained by the method has good application prospects in the fields of photocatalysis, electrode materials, pigments, ion conductive ceramic, and the like.
Owner:BEIJING UNIV OF TECH

Preparation and application of full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent material in LED (Light-emitting Diode)

The invention relates to preparation and application of a full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent material in an LED (Light-emitting Diode). The full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent material is prepared through the steps of adding zinc nitrate hexahydrate, terephthalic acid, CTAB (Cetyltrimethyl Ammonium Bromide) and TMB(Tetramethylbenzidine) into DMF (Dimethyl Formamide), reacting, vacuum drying a resultant, and obtaining a mesoporous MOF-5 crystal; dissolving cesium carbonate into octadecene and oleic acid, and obtaining a cesium oleic acid solution; dissolving lead halide into octadecene, oleic acid and oleylamine, and obtaining a reaction solution; injecting the cesium oleic acid solution, quickly cooling, centrifuging, obtaining a perovskite quantum dot, dissolving in normal hexane, and obtaining a perovskite quantum dot normal hexane solution; vacuum drying the mesoporous MOF-5 crystal, and adding the perovskite quantum dot normal hexane solution; filtering, precipitating, vacuum drying, and obtaining the full-inorganic perovskite quantum dot/mesoporous MOF-5 composite luminescent material. The composite luminescent material is mixed with an ultraviolet curing adhesive so as to drip and be coated on a blue-light LED chip, and ultraviolet curing is carried out. According to the preparation method, the stability and the ion exchange resistance of the perovskite quantum dot are improved.
Owner:LANZHOU UNIVERSITY

Method for preparing room temperature halogen-enriched CsPbX3 inorganic perovskite nanocrystal

The invention discloses a method for preparing room temperature halogen-enriched CsPbX3 inorganic perovskite nanocrystal. The method is characterized by comprising the steps that alide amine is introduced on the basis of conventional room temperature synthesis of the inorganic perovskite nanocrystal, a polymeric pecursor solution in which the alide amine has been added is added into a polar solvent, and the CsPbX3 (X=Cl, Br, I or other mixtures) inorganic perovskite nanocrystal. Alide amine is prepared by adding NH4X into oleylamine and performing degassing for 1 h in the atmosphere of inert gas at 100 DEG C. The method has the advantages that according to room temperature halogen-enriched synthesis, the fluorescence quantum efficiency and stability are high, the method is simple, and the room temperature halogen-enriched CsPbX3 inorganic perovskite nanocrystal can be produced in a large scale. Compared with the CsPbX3 nanocrystal synthesized in a conventional method, the halogen-enriched synthesized CsPbX3 inorganic perovskite nanocrystal shows excellent optical property, high fluorescence quantum efficiency is still shown after purification many times and is 3-4.3 times the fluorescence quantum efficiency in the conventional method, and the application prospect of the method is improved.
Owner:HUBEI UNIV

Preparation method and application of RGD-modified ultra-small magnetic iron oxide nanoparticles

The invention discloses a preparation method of RGD-modified ultra-small magnetic iron oxide nanoparticles. The preparation method comprises the following steps: preparing ultra-small magnetic iron oxide nanoparticles by taking ferric acetylacetonate as a reaction raw material and a precursor, taking oleylamine as a surfactant and a reducing agent and taking dibenzyl ether as a solvent; replacing oleylamine molecules wrapped on the surfaces of the nanoparticles by utilizing dopamine-modified HOOC-PEG-COOH to realize PEG-modification of the surfaces of the nanoparticles; and finally, chemically coupling RGD cyclic peptide by virtue of free carboxyl at the tail end of the PEG to obtain the RGD-modified ultra-small magnetic iron oxide nanoparticles. The method of synthesizing the ultra-small magnetic iron oxide nanoparticles has the characteristics of a simple process, a high raw material conversion ratio, strong repeatability and the like. The synthesized magnetic iron oxide nanoparticles have the characteristics of a regular morphology, an ultra-small dimension, good stability, good monodispersity, high biocompatibility, and tumor specific targeting, and the like, and can be used as a T1-weighted imaging high-performance magnetic resonance imaging contrast agent with a tumor active targeting function.
Owner:SOUTHEAST UNIV

Method for preparing multi-shape controllable nano nikel-cobalt spinel oxide

The invention relates to a method for preparing multi-shape controllable nano nikel-cobalt spinel oxide. The method includes the steps that nickel nitrate and cobalt nitrate are dissolved in anhydrous ethanol according to the cobalt-nickel atom ratio to form a solution A; oleylamine is dispersed in an ethanol solution to form a solution B, and the solution B and the solution A are mixed to obtain a mixed solution; the mixed solution is fully and evenly stirred and moved into a dynamic reaction kettle, H2 is replaced in a sealed mode, pressure intensity of H2 is adjusted to 6-15 bar after replacement, and a steel cylinder air outlet valve is closed; the stirring speed of the dynamic reaction kettle is adjusted to 400 r/min, temperature is set to be 150 DEG C, and reaction is carried out for 10 h; a product is cleaned through ethanol and other nonpolar solvents respectively, centrifugal separation is carried out, and a sediment precursor is obtained through drying at the temperature of 60 DEG C; the temperature of the obtained sediment precursor rises in an air atmosphere at the speed of 10 DEG C/min, and the sediment precursor is heated to 200-400 DEG C and kept warm. According to the method, procedures are few, materials are easy to get and low in price, the procedures are safe, nikel-cobalt spinel oxide of different shapes can be obtained by changing a small condition in the procedures, and accordingly preparing of the controllable nano nikel-cobalt spinel oxide is achieved.
Owner:CHINESE RES ACAD OF ENVIRONMENTAL SCI

Supported palladium catalyst and preparation method and application thereof

The invention discloses a supported palladium catalyst and a preparation method and application thereof. The supported palladium catalyst disclosed by the invention comprises a graphene carrier and palladium nano-crystals or palladium nano-alloys supported on the carrier, wherein the palladium nano-crystals or palladium nano-alloys account for 10-50 mass percent. The preparation method comprises the following steps: (1) dissolving palladium salt in oleylamine to obtain a palladium salt solution, or dissolving cobalt salt or nickel salt and palladium salt in oleylamine to obtain a mixed solution; (2) adding a boron-nitrogen compound into the palladium salt solution or the mixed solution, and adding an organic settling agent, thereby obtaining the palladium nano-crystals or palladium nano-alloys; and (3) supporting the palladium nano-crystals or palladium nano-alloys on graphene, thereby obtaining the supported palladium catalyst. The supported palladium catalyst and the preparation method disclosed by the invention have the advantages that the preparation method is low in reaction temperature and is simple and convenient, and the shape and size of the palladium catalyst can be controlled. Moreover, the active ingredients of the supported palladium catalyst disclosed by the invention are uniform in size and high in dispersity, and the catalyst is high in activity and can be used for catalyzing formic acid oxidation.
Owner:SUZHOU INSTITUE OF WUHAN UNIV

Preparation method of Cu-Zn-In-S quantum dot luminescent thin film

ActiveCN103589427AEasy to operateSynthetic temperature is mildLuminescent compositionsFluorescence spectraAdhesive
The invention discloses a preparation method of a Cu-Zn-In-S quantum dot luminescent thin film. The preparation method comprises the following steps: (1) adding cuprous chloride, indium chloride, zinc salt, a capping agent and a surface coating agent to a non-polar high boiling point organic solvent so as to obtain a Cu, In and Zn mixed precursor solution, stirring and heating under the atmosphere of nitrogen or inert gas so as to form a clear transparent solution; (2) adding an oleylamine solution of sulfur to the clear transparent solution obtained in the step (1), and heating for reacting so as to prepare a Cu-Zn-In-S quantum dot solution; (3) separating so as to obtain Cu-Zn-In-S quantum dots; (4) mixing the prepared Cu-Zn-In-S quantum dots with a component A of an LED (Light Emitting Diode) pouring sealant; (5) uniformly mixing a component B of the LED pouring sealant with a mixture obtained in the step (4), removing air bubbles, then coating a product on a glass substrate, and curing at a room temperature so as to obtain the Cu-Zn-In-S quantum dot luminescent thin film. The fluorescence spectra of the Cu-Zn-In-S quantum dot luminescent thin film prepared by the method can be adjusted. The Cu-Zn-In-S quantum dot luminescent thin film has the excellent fluorescence property of the Cu-Zn-In-S quantum dots and the good machining property of an organic silicon adhesive AB.
Owner:WENZHOU UNIVERSITY

Preparation method of perovskite type nanocrystalline

The invention relates to a preparation method of perovskite type nanocrystalline. The perovskite type nanocrystalline is CsPbXY, wherein X is selected from any one of Cl, Br or I; Y is selected from any one of Cl, Br or I; X is different from Y; a is greater than or equal to 0, b is greater than or equal to 0, and a+b=3. The method comprises the steps that cesium salt, long-chain olefin and oleic acid are mixed; under the inert gas protection, heating reaction is performed to obtain an oleic acid cesium solution; PbO, ammonium halide and long-chain olefin are mixed; then, oleylamine and oleic acid are injected; heating is performed; the oleic acid cesium solution is injected under the inert gas protection; reaction and cooling are performed to obtain the CsPbXY perovskite type nanocrystalline. When the method is used for synthesizing the perovskite type nanocrystalline, the types and the proportion of halogen can be regulated and controlled; the performance of the perovskite type nanocrystalline is controlled; the method is simple; the photoelectric conversion performance of the synthesized perovskite type nanocrystalline is good; meanwhile, the synthetic raw materials use low-toxicity PbO; green and environment-friendly effects are achieved.
Owner:SOUTH UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA +1

Method for preparing CsPbX3 perovskite quantum dots rapidly and simply at room temperature

The invention discloses a method for preparing CsPbX3 perovskite quantum dots rapidly and simply at room temperature. The method comprises the following steps of: a) dissolving cesium hydroxide, a lead source and a halogen-ammonium source in an anhydrous ethanol solvent according to a molar ratio of 1:1:3, adding a slightly-excessive amount of oleic-acid oleylamine as a surface active agent according to equimolar negative and positive ions, slightly stirring for completely dissolving the oleic-acid oleylamine to obtain a precursor; b) transferring a precursor solution into organic solvents such as methyl benzene, stirring for completely reaction of the mixture, and thus obtaining the CsPbX3 perovskite quantum dots at the room temperature. The method for preparing the CsPbX3 perovskite quantum dots rapidly and simply at the room temperature disclosed by the invention has the advantages that the anhydrous ethanol is adopted as a polar solvent, simultaneously the cesium hydroxide, lead oleate and tetraoctyl ammonium halide with easier dissolution are adopted to replace CsX and PbX2, and the traditional solvents such as DMF (Dimethyl Formamide) with larger toxicity are replaced, so that the synthetic stability of the CsPbX3 perovskite quantum dots is better; due to room-temperature operation, the method is lower in cost and more convenient in operation, is more environmentally friendly and is suitable for large-scale batch production.
Owner:HUBEI UNIV

Preparation method of bicolor fluorescent semiconductor nanomaterial based on Mn-doped CuInS2/ZnS

The invention relates to a preparation method of a bicolor fluorescent semiconductor nanomaterial based on Mn-doped CuInS2/ZnS. The preparation method comprises the following steps: (1) preparing CuInS2/ZnS quantum dots, purifying the CuInS2/ZnS quantum dots and then dissolving the CuInS2/ZnS quantum dots in n-hexane; (2) adding the CuInS2/ZnS quantum dots obtained by the step (1) into octadecene (ODE), heating to 150 DEG C under an argon gas environment, injecting a mixed solution of Mn(Ac)2 (manganese acetate) and oleylamine and maintaining for 1 hour at the 150 DEG C; then heating to 240 DEG C, injecting the mixed solution of Zn(Ac)2, oleic acid/DDT (Dichloro-Diphenyl-Trichloromethane) and the ODE and reacting for 1 hour at 240 DEG C; and cooling to a room temperature, thereby obtaining the quantum dot nanomaterial of CuInS2 and ZnS: Mn/ZnS. The quantum dot nanomaterial can be used for replacing yellow fluorescent powder to be prepared into a white LED (Light Emitting Diode). The Mn-doped CuInS2/ZnS quantum dots are of a nanomaterial which is nontoxic and environment-friendly, and has two fluorescence peak positions within a visible light range, wherein the peak positions are between 525nm and 590nm or so; the relative strength of the two fluorescence peaks can be regulated by regulating the content of the Mn.
Owner:SOUTHEAST UNIV

Cobalt oxide/carbon composite nano wave-absorbing material and preparation method thereof

The invention discloses a cobalt oxide/carbon composite nano wave-absorbing material and a preparation method thereof and relates to a magnet/dielectric composite nano wave-absorbing material. The cobalt oxide/carbon composite nano wave-absorbing material has a core-shell structure, wherein the core is magnetic cobalt oxide; and the shell is a carbon layer. The preparation method comprises: adding a cobalt salt into a solvent, and after the cobalt salt is dissolved, filling the solution into a reaction kettle; placing the reaction kettle in an outer cover and heating the reaction kettle; after the reaction kettle cools naturally to room temperature, taking out supernatant liquor, carrying out centrifugal separation on lower precipitate, washing and drying the precipitate to obtain a flaky/flower-shaped cobalt hydroxide precursor; mixing the precursor and oleylamine in a quartz tube; after the precursor is dissolved, inserting the quartz tube in a tubular furnace to heat the quartz tube at a constant temperature for at least 20 minutes; and taking out the quartz tube, adding absolute ethanol, standing the mixture, carrying out centrifugal separation on the mixture, and washing and drying the precipitate to obtain the cobalt oxide/carbon magnet/dielectric composite nano wave-absorbing material.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products