Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3360 results about "Cobalt salt" patented technology

Cobalt Iodized Salt. A fine-screened bag and block salt with cobalt and iodine that helps cattle, sheep, and goats synthesize vitamin B12 and plays a role in thermoregulation, intermediary metabolism, and reproductive growth and development.

Graphene-supported cobaltosic oxide nano composite material and preparation method thereof

The invention discloses a graphene-supported cobaltosic oxide nano composite material and a preparation method thereof. The graphene-supported cobaltosic oxide nano composite material consists of graphene and cobaltosic oxide, wherein the cobaltosic oxide is loaded on graphene nano sheets; the content of the graphene nano sheets is 2 to 95 weight percent, and the thickness of the graphene nano sheets is 0.3 to 50 nanometers; and the particle size of the cobaltosic oxide is 1 to 200 nanometers and the cobaltosic oxide is ball-shaped or flaky. The preparation method comprises: firstly, mixing solution of graphene oxide, a bivalent cobalt salt and a polymer surfactant; and secondly, mixing the solution obtained by the first step with alkaline solution added with an oxidant, stirring the mixed solution or stirring the mixed solution by ultrasonic waves for 0.2 to 5 hours, transferring the mixed solution to a high-temperature reaction kettle, annealing the reaction product at 100 to 250 DEG C for 3 to 30 hours to obtain a product and washing and drying the product to obtain the graphene-supported cobaltosic oxide nano composite material. The size of the cobaltosic oxide is controllable. The reduction of the graphene oxide and the generation of the cobaltosic oxide are accomplished at the same time.
Owner:SOUTHEAST UNIV

Carbon-coated ternary positive electrode material and preparation method thereof

The invention discloses a carbon-coated ternary positive electrode material and a preparation method thereof. The preparation method comprises the following steps: S1, preparing a ternary positive electrode material precursor by taking nickel salt, cobalt salt and manganese salt as raw materials; S2, preparing a conductive carbon dispersion system, wherein conductive carbon is dispersed in water containing an organic carbon source; S3, adding the ternary positive electrode material precursor and a lithium compound into the conductive carbon dispersion system, and mixing uniformly to obtain a mixture; S4, drying the mixture under a vacuum condition; S5, carrying out high temperature treatment on the dried mixture under a closed condition or in an inert gas protection atmosphere so as to obtain the carbon-coated ternary positive electrode material. The carbon-coated ternary positive electrode material is uniform in coating, simple to operate, low in cost and high in efficiency; the conductive carbon and the ternary positive electrode material are simultaneously coated with network-shaped amorphous carbon which serves as a conductive medium or a channel of the conductive carbon and the ternary positive electrode material, thereby greatly improving the rate performance of the ternary positive electrode material.
Owner:SHENZHEN BETTERPOWER BATTERY

Preparation method of nano positive material for lithium ion battery

The invention belongs to the field of preparation techniques of nanophase materials and green energy resources, and relates to a preparation method of a nano positive material LiNi1 / 3Mn1 / 3Co1 / 3O2 applied to a lithium ion battery. By using the method, the defects that the calcining temperature needed by a current synthetic material is high, the calcining time is long, the particle sizes of a product are not uniform, and the like, are mainly solved. The preparation method comprises the following steps: adding a certain amount of template agent in a mixed aqueous solution of a nickel salt, a manganese salt and a cobalt salt, and then, dripping a precipitant and a complexing agent into the obtained mixture to form a precipitate; subjecting the precipitate and the mixed aqueous solution to a high-pressure thermal reaction in a hydrothermal kettle, cleaning and baking the obtained product to be dry, so as to obtain a nickel manganese cobalt oxide; and finally, uniformly mixing the nickel manganese cobalt oxide with the lithium salt to prepare a final product by calcining and cooling. By using the preparation method, the product with favorable electrochemical performance can be obtained within a shorter calcining time; the energy consumption is decreased; and the preparation method has obvious economic benefit in the large-scale application of industrial synthesis.
Owner:ADVANCED MFG TECH CENT CHINA ACAD OF MASCH SCI & TECH +2

Method for preparing aluminum oxide coated modified lithium nickel cobalt manganese oxygen cathode material

The invention discloses a method for preparing an aluminum oxide coated modified lithium nickel cobalt manganese oxygen cathode material. The method comprises the following steps of: (1) preparation of a precursor: mixing water-soluble metallic nickel salt, cobalt salt and manganese salt into a mixed solution, dripping the mixed solution, a precipitator and a morphological control agent into a reaction container, controlling the pH value and reaction temperature of a system, and performing filtering, washing and vacuum drying after reaction to obtain a (NixCoyMn1-x-y)(OH)2 precursor, wherein x, y and x+y are more than 0 and less than 1; (2) preparation of an aluminum oxide coated precursor: dispersing the (NixCoyMn1-x-y)(OH)2 precursor, water-soluble aluminum salt and a disperser into deionized water, stirring while heating until the disperser is hydrolyzed, filtering to obtain an Al(OH)3-coated (NixCoyMn1-x-y)(OH)2 precursor, roasting the precursor in a sintering furnace to obtain Al2O3-coated (NixCoyMn1-x-y)(OH)2 precursor powder; and (3) uniformly mixing the Al2O3-coated (NixCoyMn1-x-y)(OH)2 precursor powder with lithium salt powder, and calcinating at high temperature to obtain an aluminum oxide coated modified Li(NixCoyMn1-x-y)O2 cathode material with a lamellar crystal structure.
Owner:NINGDE AMPEREX TECH

Graphene nanometer sheet-cobaltous oxide composite negative electrode material of lithium ion battery and preparation method thereof

The invention relates to a graphene nanometer sheet-cobaltous oxide composite negative electrode material of a lithium ion battery and a preparation method thereof, and belongs to the technical field of batteries. The negative electrode material consists of graphene nanometer sheets and cobaltous oxide, wherein the graphene nanometer sheets are distributed on cobaltous oxide particles in a staggering way; the mass fraction of the graphene nanometer sheets is 5 to 90 percent; the thickness of the graphene nanometer sheets is 1 to 50 nanometers; and the particle size of the cobaltous oxide is 10 to 500 nanometers. The preparation method comprises the following steps: dispersing graphite oxide in alcohol-water solution or aqueous solution with ultrasound or stirring; adding cobalt salt, alkali and a reducing agent into the mixture and pouring the mixture into a hydrothermal kettle after stirring; performing further sealing and synchronous hydrothermal reaction, washing, filtering and drying to obtain a graphene nanometer sheet-cobaltous oxide composite; and processing the graphene nanometer sheet-cobaltous oxide composite in the protective atmosphere to obtain the graphene nanometer sheet-cobaltous oxide composite negative electrode material. In the invention, when the material is charged or discharged by a current of 200mA/g, the reversible specific capacity of the material can be stabilized in a range of over 900mAh/g.
Owner:SHANGHAI JIAO TONG UNIV

Rare-earth doping modified lithium ion battery ternary positive electrode material and preparation method thereof

The invention relates to a rare-earth doping modified lithium ion battery ternary positive electrode material and a preparation method of the rare-earth doping modified lithium ion battery ternary positive electrode material. The chemical general formula of the material is as follows: LiNiaCo<1-a-b>MnbRxO2/M, wherein a is more than 0 and less than 1, b is more than 0 and less than 1, (1-a-b) is more than 0 and less than 1, x is more than 0.005 and less than 0.1, R is one or more of rare-earth lanthanum, cerium, praseodymium and samarium, and M is a composite cladding layer of oxide of aluminum, titanium or magnesium and carbon. The soluble metal nickel salt, cobalt salt, manganese salt and rare-earth compound are mixed to prepare a mixed salt solution, the mixed salt solution is reacted with a mixed alkaline solution prepared by mixing NaOH and ammonium hydroxide, after the reaction solution is filtered, washed and dried, the obtained product is uniformly mixed with lithium salt powder to be ball milled, then the mixture is calcined at the high temperature and coated with the composite cladding layer of the aluminum, titanium or magnesium oxide and carbon, and finally the calcined mixture is calcined at a constant temperature to obtain the rare-earth doping modified lithium ion battery ternary positive electrode material. After doping the rare earth, the metal oxide and carbon composite cladding layer, which are cheap and easy to obtain, are adopted, so that the cycling performance and the rate performance can be improved, and the charging-discharging efficiency of the material also can be improved.
Owner:ZHEJIANG MEIDARUI NEW MATERIAL TECH CO LTD

Modified lithium ion battery ternary positive electrode material and preparation method thereof

The invention relates to a modified lithium ion battery ternary positive electrode material and a preparation method of the modified lithium ion battery ternary positive electrode material. The chemical generation formula of the material is as follows: LiNiaCo<1-a-b>MnbBxO2/TiO2, wherein a is more than 0 and less than 1, b is more than 0 and less than 1, (1-a-b) is more than 0 and less than 1, x is more than 0.005 and less than 0.1, and the TiO2 is a cladding layer. The soluble nickel salt, cobalt salt and manganese salt are prepared into a mixed salt solution, the mixed salt solution is reacted with a mixed alkaline solution prepared by mixing the NaOH and ammonium hydroxide, after being filtered, washed and dried, the reaction product is mixed with a boronic compound and roasted for 4h to 12h at the temperature of 300 to 800 DEG C under an air atmosphere, then the roasted product is ball milled with the lithium salt to be uniformly mixed together, the mixture is coated with titanium dioxide after being calcined at the high temperature to obtain the modified lithium ion battery ternary positive electrode material. The prepared boron doping modified ternary positive electrode material is high in specific capacity and good in cycling performance.
Owner:ZHEJIANG MEIDARUI NEW MATERIAL TECH CO LTD

Preparation method of single-crystal Li(NiCoMn)O2 ternary cathode material

The invention relates to a preparation method of a single-crystal Li(NiCoMn)O2 ternary cathode material, and belongs to the technical field of a manufacturing process for chemical electrode materials. The preparation method comprises the following steps: firstly, nickel salt, cobalt salt and manganese salt are dissolved in a deionized water and ethylene glycol mixed solution, the mixture is uniformly stirred, a surfactant is added, the mixed solution is clarified, a precipitant is added, the mixture is uniformly stirred and poured into a reactor, the reactor is arranged in a drying oven for a reaction, and then an obtained precursor and lithium salt are mixed, presintered and calcined to obtain a target product. The preparation method is simple and convenient to operate, the controllability of preparation parameters is high, the prepared ternary cathode material is a single-crystal material, particle sizes are concentrated at the submicron dimension, a fast conveying channel with the short path is provided for lithium ions, and contact of the material with an electrolyte is increased. The ternary cathode material has high specific capacity, high rate capability and high cycling stability, and meets the requirements of electronic products with high volume energy density.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

High-density spherical nickel-cobalt-aluminum precursor material and preparation method thereof

ActiveCN103553152AEffective control of coprecipitation reaction processControl the Co-precipitation Reaction ProcessCell electrodesNickel oxides/hydroxidesNickel saltHigh density
The invention discloses a high-density spherical nickel-cobalt-aluminum precursor material. The chemical molecular formula of the nickel-cobalt-aluminum precursor material is Ni(1-x-y)CoxAly(OH)(2+y); the tap density of the nickel-cobalt-aluminum precursor material is 1.8-2.4 g / cm3; the material is spherically granular; the average particle size of the material ranges from 6 to 17 microns. The invention also discloses a preparation method of the precursor material. The preparation method comprises the following steps of: firstly, evenly mixing an aluminum salt with a complexing agent; secondly, evenly mixing a nickel salt with a cobalt salt solution; adding the mixed solution, the complexing agent and a precipitator solution to a reactor in parallel for continuous coprecipitation reaction, controlling the pH value in the reaction process within the range from 11 to 12, keeping the materials stay in the reactor not more than 20 h, performing solid-liquid separation after stable reaction, and finally, aging, washing and drying the solid material to obtain the high-density spherical nickel-cobalt-aluminum precursor material. The aluminum element in the high-density spherical nickel-cobalt-aluminum precursor material provided by the invention can be combined with nickel and cobalt elements evenly; and the tap density of the high-density spherical nickel-cobalt-aluminum precursor material is higher.
Owner:JINCHI ENERGY MATERIALS CO LTD

Co3O4 nano hollow sphere material and preparation method and application thereof

InactiveCN101863518AGood electrochemical behaviorGood intercalation/extraction electrochemical behaviorCell electrodesCobalt oxides/hydroxidesElectrochemistrySurface-active agents
The invention provides a Co3O4 nano hollow sphere material and a preparation method and the application thereof. The preparation method of the Co3O4 nano hollow sphere material comprises the following steps of: mixing cobalt salt, surface active agent, precipitant with water according to stoichiometric ratio; putting mixed solution into a reaction kettle to perform hydro-thermal reaction, washing and drying to obtain a powdered mixed precursor; and heat treating the precursor in air to finally obtain the Co3O4 nano hollow sphere material. The obtained Co3O4 nano hollow sphere material has a regular surface nano piece layer and an internal hollow network structure, has a better electrochemical behavior, can be used for a cathode of a rechargeable lithium ion battery, can guarantee the electrolyte to be sufficiently permeated, can provide more electric active points with an increased contact surface, guarantees the lithium ion to better perform an embedding/withdrawing electrochemical behavior, enlargers the specific surface area, and improves the lithium storage capability. The internal network structure also shortens the reaction path of the lithium ion, i.e. shortens the conduction path of the e-and the Li+, thereby improving the characteristic of multiplying power.
Owner:SHANGHAI INSTITUTE OF TECHNOLOGY

Three-dimensional porous urchin-like cobalt phosphide as well as preparation method and application thereof

The invention discloses three-dimensional porous urchin-like cobalt phosphide as well as a preparation method and an application thereof. The preparation method comprises the steps of: uniformly mixing a cobalt salt and an amino compound in a neutral-polarity solvent to have hydrothermal reaction to prepare a three-dimensional urchin-like hydrated basic cobalt carbonate precursor mainly formed by assembly of nanowires; and annealing the hydrated basic cobalt carbonate precursor and hypophosphite at a high temperature to obtain the three-dimensional urchin-like cobalt phosphide. By preparing the three-dimensional urchin-like hydrated basic cobalt carbonate precursor by a simple hydrothermal process and obtaining the three-dimensional urchin-like cobalt phosphide through high temperature phosphorization, not only is the process simple and controllable, the source of raw material wide and the cost low, but also the yield is relatively high, and the mass production is realized. The prepared product is uniform in size, has an urchin-like porous structure, maintains more catalytic active sites, has high activity and excellent stability and is wide in application prospect in the field of electric catalysis.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Method for recovering valuable metal from waste lithium ion battery material

The invention discloses a method for recovering valuable metal from a waste lithium ion battery material, and belongs to the technical field of comprehensive recycling and resource recycling of electronic wastes. The method comprises steps of mixing the cathode material of the waste lithium ion battery with low-valence sulfate such as sulfur or sulfide; subjecting the mixture to a sulfuration calcination treatment at a temperature of 300 to 900 degrees centigrade; immersing a calcined product in water to obtain a lithium salt aqueous solution which can be further used for preparing a lithium carbonate product; subjecting to water leaching residues to oxidation acid leaching or direct acid leaching to extract valuable elements such as nickel, cobalt and manganese; and purifying and extracting the leaching solution to obtain the corresponding cobalt salt and nickel salt products. The method of the invention has a simple process and a short process flow. The sulfur dioxide gas generated by calcining the sulfide can be used for preparing sulfuric acid used for subsequent nickel-cobalt leaching, thereby achieving zero pollution discharge and finally achieving a purpose of comprehensively recovering the valuable metal in the lithium ion battery cathode material at high efficiency and low cost.
Owner:BEIJING MINING & METALLURGICAL TECH GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products