Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1214 results about "Lithium cobalt oxide" patented technology

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO₂. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

All-solid state lithium ion battery composite positive electrode material and preparation method thereof, and all-solid state lithium ion battery

Embodiments of the present invention provide an all-solid state lithium ion battery composite positive electrode material, which comprises a positive electrode active material and a cladding layer arranged on the surface of the positive electrode active material, the positive electrode active material is one or a plurality of materials selected from a lithium cobalt oxide, lithium nickelate, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganese, vanadium pentoxide, molybdenum trioxide and titanium disulfide, and the cladding layer material is one or a plurality of lithium-containing transition metal oxides. According to the present invention, with the cladding layer, formation of the space charge layer can be effectively inhibited, the electrode / inorganic solid state electrolyte interface can be improved, and the interface resistance of the all-solid state lithium ion battery can be easily reduced so as to improve cycle stability and durability of the all-solid state lithium ion battery. Embodiments of the present invention further provide a preparation method for the all-solid state lithium ion battery composite positive electrode material, and an all-solid state lithium ion battery containing the all-solid state lithium ion battery composite positive electrode material.
Owner:泰州市海通资产管理有限公司

Method for separating and recovering lithium and cobalt from positive electrode material of lithium battery

The invention provides a method for separating and recovering lithium and cobalt from a positive electrode material of a lithium battery. The method comprises the following: (1) a step of physical disassembly and alkaline leaching; (2) a step of roasting and washing, namely adding sulfate into a black solid material containing lithium cobalt oxide obtained in the step (1) in the weight ratio of the black solid material to the sulfate being 1:(0.8-1.2), mixing, roasting for 2 to 6 hours at a temperature of between 600 and 800 DEG C, cooling, adding a cleaning solution in terms of the ratio of solid to liquid being 1:(3-5) to wash, agitating for 1 to 2 hours at a temperature of between 60 and 80 DEG C and filtering to obtain Li<+>-containing filtrate and filter residue containing lithium and a small amount of cobalt; (3) a step of reducing and acid saluting; and (4) a step of extracting the cobalt to obtain pure Co2<+> solution. By the method, high recovery ratios of the metal lithium and the metal cobalt are achieved, the recovery ratio of the lithium is over 90 percent, the obtained lithium and the obtained cobalt have high purity, the content of the lithium mixed in the cobalt isgreatly reduced, and the purity of the cobalt can reach over 99.5 percent. Therefore, the method has higher economic benefits and social benefits.
Owner:JINGMEN GEM NEW MATERIAL +1

Method for directly roasting and processing spent lithium ion batteries and recycling valuable metals

The invention relates to a method for directly roasting and treating spent lithium ion batteries and recycling valuable metals, in particular to a method for recycling and treating spent lithium ion batteries using lithium cobalt oxide as an anode material. The method comprises the following steps: firstly, remove organic binder on an organic diaphragm material and an electrode material in the batteries by roasting at a temperature of 500 DEG C to 850 DEG C; crushing and mixing the roasted battery material with sodium sulfate (or potassium sulfate) and concentrated sulfuric acid before size mixing; carrying out secondary heat treatment in an electric stove at a temperature of 350 DEG C to 600 DEG C to convert metals in the spent lithium ion batteries, such as cobalt, copper, lithium, and the like into easily water-soluble sulfate which is leached by water or a dilute sulphuric acid solution; then, using an organic extracting agent to respectively extract the cobalt and the copper from a leaching solution and obtain a cobalt product and a copper product; using sodium carbonate to precipitate the metal lithium from the leaching solution after the cobalt and the copper are removed; and enabling the leaching solution to return treatment heat so as to secondarily treat materials. The invention has a metal leaching rate higher than 99.5 percent and a metal recovery rate higher than 99 percent.
Owner:BEIJING GENERAL RES INST OF MINING & METALLURGY

Method for recycling waste lithium cobalt oxide lithium ion battery

The invention relates to a method for recycling waste lithium cobalt oxide lithium ion battery. The method is characterized in that valuable components in the waste lithium ion battery are completely recycled by integrating the processes of crushing by a punch press, magnetic separation, eddy current selection, anaerobic atmospheric roasting, temperature-variable filtering and the like, and products with the relatively high additional values, such as elemental crude cobalt, lithium carbonate, graphite, copper, aluminum, iron, and plastics are obtained. Manners of crushing by a punch press, magnetic separation, eddy current selection and the like are adopted for performing material separation, so that the original physical properties of materials are kept. Meanwhile, positive powder and negative powder of an electrode material are cooperatively treated, the negative graphite material is effectively utilized, the in-situ preparation of a resource can be realized, and the waste lithium ion battery can be relatively completely recycled. The anaerobic atmospheric roasting is adopted, so that the reaction condition is relatively loose, the loss of a graphite material is reduced, the cost is saved, the technological flow is simplified, and the industrial application practice can be facilitated.
Owner:SHANGHAI JIAO TONG UNIV

Preparation method of Co3O4 with large grain size and uniformly doped with aluminum

The invention relates to a preparation method of Co3O4 with large grain size and uniformly doped with aluminum. The invention provides the preparation method of the Co3O4 which is uniformly doped withaluminum and is large in grain size and uniform in particle distribution, and the obtained Co3O4 with the large grain size and uniformly doped with aluminum can completely conform to the requirementof preparation of 4.45V high-voltage lithium cobalt oxide. According to the method, the large-grain size and aluminum-doped cobalt carbonate is synthesized by a wet method, and the problems of difficulty in enlargement of cobalt hydroxide (or hydroxyl cobalt) system grain size and non-uniform particle distribution are solved; with the regard to the problem of uniform aluminum doping of a cobalt carbonate system, a parameter is set from principle, an aluminum compound is prevented from being independently separated out and gathered, the doped Al element can be uniformly distributed in the Co3O4, the grain size reaches 15 micrometers or above, and the particle distribution is uniform; and the lithium cobalt oxide prepared from the aluminum-doped Co3O4 has high specific capacity and excellentcycle property under 4.45V.
Owner:취저우화여우코발트뉴머터리얼컴퍼니리미티드

Fast ion conductor modified lithium ion battery cathode material lithium cobalt oxide with fast ion conductor and preparation method

The invention discloses a fast ion conductor modified lithium ion battery anode material lithium cobalt oxide comprising lithium cobalt oxide and a lithium fast ion conductor layer coating the outer surface of the lithium cobalt oxide. The lithium fast ion conductor layer comprises the components of Li1+x+yAxB2-xSiyP3-yO12-eN, wherein A is one or more than one of Al, Sc, La, Cr, Fe, Tl, Eu and In, B is one or more than one of Ti, Zr and Hf, N is one or more than one of Li2O, MgO and Y2O3, and x, y and e are all not less than 0 and not more than 2. The preparation method of the fast ion conductor modified lithium ion battery anode material lithium cobalt oxide comprises the following steps of: evenly mixing A, B an N sources, lithium salt, a silicon source, a phosphorus source and a lithium ion battery anode material to be modified, carrying out the processes of drying, roasting, crushing, screening and the like to prepare the lithium ion battery anode material coated with a phosphate system on the surface. The modified anode material lithium cobalt oxide not only can work under a higher voltage and greatly improve the battery capacity, but also greatly improves the cycle performance, the multiplying power performance, the overcharging performance and the safety performance thereof.
Owner:TIANJIN B&M SCI & TECH

Preparation technology for spherical lithium cobalt oxide doped with Ti, Mg and Al

The invention relates to the field of lithium ion battery materials and particularly relates to a preparation technology for spherical lithium cobalt oxide doped with Ti, Mg and Al. According to the preparation technology, pure water serves as base solution under the conditions that temperature ranges from 40 DEG C to 80 DEG C and a stirring speed is controlled to 60-180 r/min, ammonium bicarbonate is added into the base solution to adjust the alkalinity of the base solution to range from 5 to 30, cobalt-salt mixed solution and ammonium bicarbonate solution are continuously pumped into the base solution in parallel flow and are subjected to sedimentation reaction under the temperature of 40-80 DEG C, the solid content and the alkalinity of slurry in a reaction system are controlled, reaction feed liquid flows out continuously from an overflow gate at the upper part of a reaction kettle to enter into an ageing kettle and then is washed by a washing press and dried by a vacuum drier, spherical cobalt carbonate is subjected to primary calcination to obtain cobaltosic oxide, and the cobaltosic oxide and a lithium source are subjected to secondary calcination to obtain the spherical lithium cobalt oxide doped with Ti, Mg and Al. According to the invention, the process is simple, the reaction is easy to control, the production cost is low, the product application range is wide, and thus, the method is relatively large in production value; and the spherical lithium cobalt oxide is stable in performance and better in overcharging prevention performance.
Owner:ANHUI ALAND NEW ENERGY MATERIALS

High-voltage lithium cobalt oxide cathode material for lithium-ion battery and preparation method of high-voltage lithium cobalt oxide cathode material

The invention discloses a high-voltage lithium cobalt oxide cathode material for a lithium-ion battery and a preparation method of the high-voltage lithium cobalt oxide cathode material. The high-voltage lithium cobalt oxide cathode material is prepared from a doped lithium cobalt oxide matrix and a coating on the surface of the doped lithium cobalt oxide matrix, wherein a general formula of the doped lithium cobalt oxide matrix is Li<x>Co<1-y>M<y>O<2-z>N<z>; the general formula of the coating is LiNi<x'>Co<y'>Al<z'>O<2>; and the preparation method comprises the following steps: firstly, obtaining the lithium cobalt oxide matrix Li<x>Co<1-y>M<y>O<2-z>N<z> through once sintering; secondly, preparing a lithium cobalt oxide cathode material precursor coated with Ni<x'>Co<y'>Al<z'>(OH)<2> on the surface by liquid-phase co-precipitation reaction; and finally obtaining the high-voltage lithium cobalt oxide cathode material through twice sintering. The high-voltage lithium cobalt oxide cathode material prepared by the method is good in processability and high in compaction density, has relatively high specific capacity and good cycle performance in a high-voltage state, and can be stably circulated at high voltage of 3.0V to 4.5V.
Owner:HUNAN CHANGYUAN LICO CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products