Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

420 results about "Lithium manganese oxide" patented technology

A Lithium ion manganese oxide battery is a lithium ion cell that uses manganese dioxide, MnO. 2, as the primary cathode material. They function through the same intercalation/de-intercalation mechanism as other commercialized secondary battery technologies, such as LiCoO.

Polycrystal high-nickel positive electrode material used for lithium ion battery and preparation method for polycrystal high-nickel positive electrode material

Disclosed is a polycrystal high-nickel positive electrode material used for a lithium ion battery. The polycrystal high-nickel positive electrode material comprises a base material with a layered structure and a coating layer which is arranged outside the base material and has a spinel structure; the general formula of the base material is LiNi<1-x-y>Co<x>M<y>O<2>, wherein M is at least one kind of Mn and Al; the coating layer is lithium manganese oxide; the mass percentage of the total impurity lithium on the surface of the base material is less than 0.085% based on the total mass percentage of the base material; the preparation method for the positive electrode material comprises the following steps of weighing Ni<1-x-y>Co<x>M<y>(OH)<2>, and mixing with a lithium source, then carrying out thermal treatment, cooling, crushing and sieving to obtain the base material; measuring the content of the residual impurity Li<2>CO<3> and LiOH on the surface of the base material, adding into the metal Mn compound according to the measurement result, and carrying out low-temperature thermal treatment in an oxygen atmosphere to obtain the polycrystal high-nickel positive electrode material used for the lithium ion battery. The polycrystal high-nickel positive electrode material provided by the invention has the advantages of low material alkalinity, low inflatable degree, excellent processing property and cycling performance, and the like.
Owner:HUNAN SHANSHAN NEW ENERGY CO LTD

Method for preparing lithium-enriched lithium manganese oxide solid solution cathode material

The invention relates to a method for preparing a lithium-enriched lithium manganese oxide solid solution cathode material. The method comprises the following steps of: adding a mixed aqueous solution of nickel salt, cobalt salt and manganese salt into an oxalic acid or oxalate aqueous solution by an oxalate coprecipitation high-temperature solid state method, and stirring and reacting to generate nickel, cobalt and manganese oxalate coprecipitation; performing solid and liquid separation, washing and drying to obtain a nickel, cobalt and manganese oxalate precursor; and mixing and grinding the precursor and lithium salt, drying, baking at high temperature in an air atmosphere, and thus obtaining the lithium-enriched lithium manganese oxide solid solution cathode material. During preparation of the precursor, the proportion of the nickel salt, the cobalt salt and the manganese salt is adjusted, so that the constituents of the lithium-enriched lithium manganese oxide solid solution cathode material can be adjusted flexibly. The preparation method is suitable for large-scale, economic, stable and reliable production of the lithium-enriched lithium manganese oxide solid solution cathode material, has obvious advantages, and is high in practical value.
Owner:HUBEI WANRUN NEW ENERGY TECH DEV

Lithium manganese oxide spinel of anode materials of lithium ion batteries and method for manufacturing lithium manganese oxide spinel

The invention discloses lithium manganese oxide spinel of anode materials of lithium ion batteries. The specific surface area of the lithium manganese oxide spinel ranges from 0.2m<2>/g to 0.6m<2>/g, the content of K ions in the lithium manganese oxide spinel is lower than 800ppm, the content of other impurities in the lithium manganese oxide spinel is lower than 200ppm, the compaction density of the lithium manganese oxide spinel is higher than 3.35g/cm<3>, the initial discharge capacity of a 0.1C button battery is higher than 115mAh/g, and the 100-cycle capacity fading is lower than 8%. The method includes proportioning a lithium source, a manganese source and doping metal additives, and presintering the manganese source at the temperature ranging from 500 DEG C to 1000 DEG C; mixing the presintered manganese source, the lithium source and the doping metal additives to obtain a mixed raw material; performing multi-section sintering for the mixed raw material to obtain a sintered sample, washing the sintered sample by water, and centrifugally spinning and drying the sintered sample; and screening and grading to obtain a lithium manganese oxide product. The lithium manganese oxide product is regular in granule morphology, high in compaction density, low in impurity content and good in both processability and electric performance.
Owner:HUNAN CHANGYUAN LICO CO LTD

Modified lithium manganese oxide electrode material for lithium ion secondary battery and synthesizing method thereof

The invention provides a modified lithium manganese oxide electrode material for a lithium ion secondary battery, which is characterized in that the general formula is Li(4-x)A(x+y)Mn(5-y)O12.epsilonBOz. The synthesizing method comprises the following steps: weighing and mixing raw materials evenly in accordance with the stoichiometric ratio in the general formula and then adding the mixture of the raw materials to a container; adding an oxidizing solution, evening mixing and reacting for over 10 minutes, and then taking the materials out, washing and drying; and then carrying out high-temperature calcination and reaction for 1-30 hours at a temperature of 400-1200 DEG C under an oxygen-contained atmosphere, and cooling to obtain the modified lithium manganese oxide electrode material. Compared with an existing electrode material and a synthesizing technology, the modified lithium manganese oxide electrode material produced in the production process can improve the crystalline characteristic and the purity of products as well as the specific capacity, the initial coulomb efficiency, the cyclical stability and other characteristics in electrochemical property; and the modified lithium manganese oxide electrode material improves performances of the lithium ion battery, promotes the wider applications of the lithium ion battery and has significant economic meanings and practical value.
Owner:王明月
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products