Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1225 results about "Natural graphite" patented technology

Natural graphite is graphite that is formed by Nature. Natural graphite is an important industrial mineral which finds applications in almost every facet of manufacturing including electronics, atomic energy, hot metal processing, friction, coatings, aerospace, powder metallurgy, etc.

Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof

ActiveCN102394287AExcellent intercalation and delithiation abilityImprove cycle stabilityCell electrodesFiberCarbon composites
The invention discloses a silicon-carbon negative electrode material of a lithium ion battery and a preparation method thereof, and solves the technological problem of improving the charge and discharge cycling stability of the electrode material. The silicon-carbon negative electrode material is prepared by mixing a silicon-carbon composite material and a natural graphite material, wherein the weight of the silicon-carbon composite material is 7-20% and the silicon-carbon composite material is prepared by depositing carbon nanotube and/or carbon nanofiber on the surface of nanometer silica fume and/or embedding into the nanometer silica fume to form core, the surface of which is covered with 3-15wt% of a carbon layer. The preparation method provided by the invention comprises steps of: precursor silicon powder preparation; chemical vapor deposition; liquid-coating roasting; crushing; and mixing. In comparison with the prior art, the reversible specific capacity of the silicon-carbon composite negative electrode material is greater than 500mAh/g; the coulombic efficiency for a first cycle is greater than 80%; the capacity conservation rate of cycling for 50 weeks is greater than 95%. The preparation method is simple, is easy to operate, requires low cost and is suitable for a high-volume negative electrode material of lithium ion batteries used for various portable devices.
Owner:BTR NEW MATERIAL GRP CO LTD

High-capacity graphite material and preparation method as well as application thereof

The invention relates to a high-capacity graphite material and a preparation method as well as application thereof. The high-capacity graphite material comprises artificial graphite and natural graphite, wherein the mass ratio of artificial graphite to natural graphite is 20:1 to 1:1. According to the preparation method, the artificial graphite and the natural graphite are uniformly mixed according to a certain mass ratio, and then surface modification is carried out on the mixture. The prepared graphite material has the advantages of high discharge capacity, high first efficiency, long cycle life, low cost and the like; the discharge capacity of the high-capacity graphite material can reach up to more than 350mAh/g (even reach up to more than 368mAh/g); a half-cell of the high-capacity graphite material charges and discharges at the 1C multiple power; after the high-capacity graphite material cycles for 100 times, the capacity retention ratio of the high-capacity graphite material is still more than 90% (even reaches up to more than 96.3%); the first efficiency reaches up to more than 95.5%; and the manufacturing cost is reduced by about 1-10%. The high-capacity graphite material provided by the invention not only can meet the requirement of a lithium ion power battery for the high multiplying power charge-discharge of the material, but also reduces the manufacturing cost of the cathode material of the lithium ion battery.
Owner:天津市贝特瑞新能源科技有限公司

Silicon monoxide composite cathode material for lithium ion battery, and preparation method thereof

The invention discloses a silicon monoxide composite cathode material for a lithium ion battery, and a preparation method of the silicon monoxide composite cathode material, aiming at improving the cycle performance. The composite cathode material comprises the components by mass percent: 10-30% of composite particle material and 70-90% of natural graphite or artificial graphite, wherein the composite particle material is silicon monoxide covered by a carbon nano tube and an amorphous carbon coating layer. The method comprises the following steps of: forming the carbon nano tube and the amorphous carbon coating layer on the surface of silicon monoxide to obtain composite particles, and mixing the composite particles with the graphite. Compared with the prior art, the preparation method enables cracking carbon to be covered on the surfaces of silicon monoxide particles, so that the volume effect of the silicon monoxide particles can be effectively inhibited in the charge-discharge process of a battery, the cycle performance is good, the specific capacity is more than 500mAh/ g, and the capacity retention ratio is more than 85% after the circulation is carried out for 100 times; and the preparation method is simple in preparation technology, low in raw material cost and suitable for the cathode material for the high-capacity lithium ion battery.
Owner:BTR NEW MATERIAL GRP CO LTD

High capacity lithium iron phosphate power cell and production technique thereof

The invention relates to a high-capacity iron phosphate lithium power battery, which is characterized in that the anode material uses the iron phosphate lithium; an anode current collector uses the aluminum foil; a conductive agent uses the superconducting carbon black and the conductive graphite; the anode material binder uses the polyvinylidene fluorine; the cathode material uses the natural graphite or the artificial graphite; the cathode current collector uses copper foil; the conductive agent uses the superconducting carbon black and the conductive graphite; and the cathode material binder uses the polyvinylidene fluorine or the sodium carboxymethylcellulose and the styrene butadiene rubber. The invention also discloses a processing technology of the high capacity iron phosphate lithium power battery, comprising the following step: matching ingredients, coating, baking, rolling, processing slice, baking, staking, assembling upper cover , baking, liquid injection, formation and partial volume. The invention adopts a stacking type, and has simple processing technology, compact battery structure and stable performance; thus, the battery capacity is greatly improved. The invention has an advantage of providing the lithium ion secondary battery of a driving energy source to the small and medium sized electric tools, such as the household electric appliance, the electric bicycle, the electric motorcycle and the electric automobile.
Owner:山东海霸电池有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products