Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6726 results about "Polyvinylidene difluoride" patented technology

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride.

Large-capacity high power polymer ferric lithium phosphate power cell and preparation method thereof

The invention discloses a large-capacity high-power polymer lithium iron phosphate power battery. The weight ratio of anode slurry is as follows: 81 to 85 percent of lithium iron phosphate, 1 to 5.5 percent of superconduction carbon, 0 to 2.5 percent of conductive carbon soot, 0 to 4 percent of conductive black lead, 0 to 2.5 percent of crystalline flake graphite, 0 to 2 percent of carbon nanometer tube as well as 6 to 7.5 percent of polyvinylidene fluoride; the weight ratio of cathode slurry is as follows: 89 to 91 percent of cathode material, 1 to 3.5 percent of superconduction carbon, 0 to 2 percent of conductive carbon soot, 0 to 4 percent of conductive black lead, 2.5 to 3.5 percent of styrene-butadiene rubber as well as 1.5 to 2 percent of sodium carboxymethyl cellulose; the steps for preparing the battery are as follows: preparing slurry, coating the anode and the cathode, rolling and pressing a polar plate, transversely and separately cutting the polar plate, baking the polar plate, welding the polar ears of the anode and the cathode, preparing a battery cell, putting the electric core into a shell and sealing, baking the electric core, injecting liquid into the battery as well as forming the battery and dividing the volume of the battery. The invention relates to a lithium-ion secondary battery which can provide drive energies for electric tools, electric bicycles, motor cars and electric vehicles.
Owner:MCNAIR TECH

Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof

The invention discloses a graphene / molybdenum disulfide (MoS2) compound nano material lithium ion battery electrode and a preparation method thereof. The electrode comprises the following components in percentage by mass: 75 to 85 percent of compound nano material serving as an active substance, of a graphene nano slice and MoS2, and 5 to 10 percent of acetylene black and 10 percent of polyvinylidene fluoride; and the mass ratio of the graphene nano slice to the MoS2 nano material in the compound nano material active substance is (1 to 1)-(4 to 1). The preparation method of the electrode comprises the following steps of: preparing an oxidized graphite nano slice by using graphite as a raw material by a chemical oxidization method; synthesizing by a one-step hydrothermal in-situ reduction method in the presence of the oxidized graphite nano slice to obtain a graphene nano slice / MoS2 compound nano material; and finally, preparing the electrode by using the graphene nano slice / MoS2 compound nano material as the active substance. The electrode has high electrochemical lithium storage reversible capacity and cyclic stabilization performance, and can be widely applied to new generation lithium ion batteries.
Owner:ZHEJIANG UNIV

Novel solar battery backboard

The invention relates to a novel solar battery backboard, which comprises the following components according to the adhesion in turn: a weathering layer, a first adhesive layer, a structure-enhancing layer, a second adhesive layer and an adhesive reflecting layer; wherein, the weathering layer is a polyvinylidene fluoride alloy layer modified by inorganic materials; the adhesive reflecting layer is a white polyethylene layer; preferably, the polyvinylidene fluoride alloy layer is a plastic alloy layer formed by the polyvinylidene fluoride and the inorganic materials with the thickness of 4-40 mum; the white polyethylene layer is a plastic alloy layer in which polyethylene is mixed with inorganic white pigment, anti-ultraviolet stabilizer and hot-oxygen ageing resistance stabilizer with the thickness of 10-300mum; the structure-enhancing layer is a polyethylene qlycol terephthalate layer; the first adhesive layer and the second adhesive layer can be one of the following three, namely, a polyurethane adhesive layer, an acrylic ester adhesive layer or an epoxy adhesive layer with the thickness of 1mum-30mum. The invention features novel structure, easily obtained materials, greatly reduced cost and good performance, conforms to the requirements of the backboard, and has important significance on solar energy industry.
Owner:SHANGHAI HIUV NEW MATERIALS

Method for preparing high-flux composite membrane from dopamine-modified nanometer material

The invention relates to a method for preparing a high-flux composite membrane from a dopamine-modified nanometer material and belongs to the technical field of modification of membrane materials. The method is characterized by comprising the following steps of: forming an active poly-dopamine composite layer on the surfaces of titanium dioxide nanometer grains by utilizing automatic polymerization of dopamine, selecting different concentrations of dopamine-modified titanium dioxide grains, and adding the modified nanometer grains utilized as additives into a membrane casting solution, in which the mass fraction of PVDF (Polyvinylidene Fluoride) is 13% and the mass fraction of PVP (Polyvinyl Pyrrolidone) is 4%, so as to bend and modify according to different proportions, thus obtaining a composite membrane prepared from dopamine-modified nanometer titanium dioxide. The method for preparing the high-flux composite membrane from the dopamine-modified nanometer material, disclosed by the invention, has the advantages that dopamine-modified titanium dioxide can be greatly dispersed in an organic solvent to form a uniform dispersed phase; the additive can be used for effectively improving the hydrophilcity and anti-pollution capability of the high-flux composite membrane; and the dopamine modification method is simple, the condition is gentle, the flux of the prepared membrane is large and the anti-pollution capability is strong.
Owner:DALIAN UNIV OF TECH

Method for preparing polyvinylidene fluoride porous membrane

The invention discloses a method for preparing a polyvinylidene fluoride porous membrane and relates to a method which makes use of a thermally induced phase separation method to prepare the polyvinylidene fluoride porous membrane. The method comprises the following steps: polyvinylidene fluoride with the weight percentage of 30wt-60wt and diphenyl carbonate with weight percentage of 70wt to 40wt or a composite thinner containing diphenyl carbonate with weight percentage of 70wt to 40wt are added into a high temperature resistant container, heated, rested and defoamed to prepare a polymer homogeneous film-casting solution; the film-casting solution is directly coated on a flat membrane formed by supporting network or spinned into hollow fiber by a spinneret, and then the flat membrane or the hollow fiber is immersed into cooling liquid to be treated with curing and the membrane is formed; the formed membrane is put into an extractant to extract the solvent, therefore, the polyvinylidene fluoride porous membrane is obtained. The method is characterized in that: the method adopts the diphenyl carbonate or the thinner taking the diphenyl carbonate as a main component to prepare the polyvinylidene fluoride porous membrane, the section structure of which is in communicating spongy structure, and the membrane has large water flux, high strength and good toughness.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products