Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1677 results about "Synthetic fiber" patented technology

Synthetic fibers (British English: synthetic fibres) are fibers made by humans through chemical synthesis, as opposed to natural fibers that are directly derived from living organisms. They are the result of extensive research by scientists to improve upon naturally occurring animal and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets, forming a fiber. These are called synthetic or artificial fibers. Synthetic fibres are created by a process known as polymerisation, which involves combining monomers to make a long chain or polymer. The word polymer comes from a Greek prefix "poly" which means "many" and suffix "mer" which means "single units". (Note: each single unit of a polymer is called a monomer). There are two types of polymerisation: linear polymerisation and cross-linked polymerisation. Example are rayon, nylon and polyester.

Flame resistant fabrics and garments made from same

InactiveUS20080057807A1Inexpensive and comfortable to wearerCotton-low durability-isWarp knittingAnimal housingPolymer scienceNatural fiber
Unique blends of fibers that incorporate synthetic cellulosic fibers to render fabrics made with such blends more durable than fabrics made with natural cellulosic fibers such as cotton. While more durable than cotton, the synthetic cellulosic fibers used in the blends are still inexpensive and comfortable to the wearer. Thus, the benefits of cotton (affordability and comfort) are still attained while a drawback of cotton—low durability—is avoided. In one embodiment, the fiber blend includes FR modacrylic fibers and synthetic cellulosic fibers, preferably, but not necessarily non-FR lyocell fibers such as TENCEL™ and TENCEL A100™. Other fibers may be added to the blend, including, but not limited to, additional types of inherently FR fibers, anti-static fibers, anti-microbial fibers, stretch fibers, and/or high tenacity fibers. The fiber blends disclosed herein may be used to form various types of FR fabrics. Desired colors may be imparted in a variety of ways and with a variety of dyes to the fabrics disclosed herein. Fabrics having the fibers blends disclosed herein can be used to construct the entirety of, or various portions of, a variety of protective garments for protecting the wearer against electrical arc flash and flames, including, but not limited to, coveralls, jumpsuits, shirts, jackets, vests, and trousers.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products