Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

332 results about "Low Mass" patented technology

Low Mass (called in Latin, Missa lecta, which literally means "read Mass") is a Tridentine Mass defined officially in the Code of Rubrics included in the 1962 edition of the Roman Missal as Mass in which the priest does not chant the parts that the rubrics assign to him. A sung Mass in turn is a ‘High’ or Solemn Mass if celebrated with the assistance of sacred ministers (deacon and subdeacon); without them it is a Missa Cantata.

Safety air bag inflation device

An air bag inflator providing a source of gas, releasable upon command, to inflate a supplemental inflation restraint (SIR) system commonly known as an automobile air bag. Provided is a pressure vessel containing one or more separate chambers for the purpose of storing gaseous fuel(s) and gaseous oxidizer(s) or liquid fuel(s) and liquid oxidizer(s) under pressure with helium as the primary filler gas. The primary function of the helium gas is to serve as a kinetic damper to modulate and control the reaction rate of the fuel(s) and oxidizer(s). Because of its low mass, high thermal conductivity and high heat capacity for its mass, helium is an excellent filler gas. In the case of the gaseous fuel(s) and oxidizer(s) a single chamber is provided. In the case of liquid fuel(s) and oxidizer(s), two or more separate housings are provided for storing the liquid fuel(s) and oxidizer(s). Along with the liquid fuel(s) and oxidizer(s) housings, two separate chambers containing pressurized helium are provided within the pressure vessel. The first helium chamber rapidly pressurizes upon initiation of a gas producing pyrotechnic igniter. This pressure acts on thin membranes on the first chamber side of the separate liquid storage housings to force the liquid fuel(s) and oxidizer(s) into the second chamber where the materials are atomized and mixed. The mixture is ignited by the arrival of hot gases from the igniter directed into the second chamber via the small diameter tube or orifice. The fuel(s) oxidizer(s) mixture burns to produce gaseous reaction products that are released into the air bag by bursting a controlled rupture burst disc.
Owner:AUTOLIV DEV AB

Biomass quick cracked oil water vapour catforming hydrogen production method

InactiveCN101318622AExtended service lifeSolve the phenomenon of carbon depositionHydrogenCatalytic reformingGas phase
The invention discloses a method by adopting biomass fast pyrolysis oil which carries out two sections of fixed bed reactors and water vapor catalytic reforming for producing hydrogen; the two sections of fixed bed reactors are connected in series, the natural dolomite which is relatively cheap and easily available is taken as catalyst in water vapor reforming reaction at the first section of fixed bed reactor, while the second fixed bed reactor adopts Ni/Mgo as catalyst to further improve the purity and yield of the target product gas. Comparatively high temperature and comparatively high S/C (more than 12) are extremely important for the effective transformation of the biomass pyrolysis oil in the first fixed bed reactor. However, for any temperature point, low mass space velocity can facilitate the increasing of the yield of any gas product and the total gas phase transformation ratio of the biomass oil is increased accordingly. The Ni/MgO catalyst is extremely effective in the purification stage, when S/CH4 is not less than 2 and the temperature is not lower than 800 DEG C, the transformation ratio of methane can reach 100 %. Low mass space velocity can facilitate effective transformation of methane; when mass space velocity is not higher than 3600h<-1>, the potential hydrogen yield can reach 81.1%.
Owner:EAST CHINA UNIV OF SCI & TECH

Low Cost Fixed Focal Point Parabolic Trough

In accordance with one embodiment, a parabolic trough system is disclosed to capture solar heat. It has low mass, high rigidity and precise robust rotational control. The trough does not require massive supports, since it use a “sandwich structure” where the core is lightweight urethane foam and the skin is made of aluminum sheet. The inside skin also functions as the parabolic reflector. The shape minimizes wind loads by centering the receiver in the parabola and by making the center of focus the center of rotation.The system can be rapidly built in the field since there are few parts. Assembly does not require heavy equipment. Support posts are used on both sides of the trough to minimize the anchoring requirements in wind loads.The trough bodies are rotated in a rotational control mechanism that uses circumscribing rings to support a continuous row of troughs that can sustain 120 mile per hour winds. Optical performance is improved with the drive ring design. The structure is continuous and torque is uniformly applied to each ring through two spools supported on drive tubes. A cable is wrapped around each spool as well as around the top part of the ring. As the spools rotate, they pull the cable and rotate the rings and troughs with precision and strength. The spools and cables also restrain the system under high wind loads.
Owner:PERISHO RANDAL JEROME

Loading control method for power generation system of automobile fuel cell

The invention provides a loading and deloading control method for a power generation system of an automobile fuel cell. The method comprises the following steps of: during loading, setting a maximum power gain sigma(x), comparing the maximum power gain sigma(x) with a difference value delta(P) between the power P(whole automobile) required by a whole automobile and the loading power P of the conventional fuel cell to determine a loading amount, and calculating the allowable power P(allowable) to be output by the power generation system of the fuel cell; adjusting corresponding parameters of the power generation system of the fuel cell according to the calculated allowable loading power P(allowable); after the adjustment is finished, returning a finish signal, repeatedly and cyclically loading until the power P(whole automobile) is equal to the power P(allowable), and cyclically loading repeatedly until the power P(allowable) is equal to the power P(whole automobile); during deloading, directly deloading; and after finishing the deloading, adjusting the parameters of the power generation system of the fuel cell. The method has the advantages that: by continuously loading according to low gain, the damage of gas insufficiency, antipole and the like to membrane electrodes, which are caused by low mass transfer because of high-speed large load loading, is reduced; and the service life of the power generation system of the fuel cell is prolonged.
Owner:SUNRISE POWER CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products