Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7455 results about "Current density" patented technology

In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the charges at this point. In SI base units, the electric current density is measured in amperes per square metre.

SOI SiGe-Base Lateral Bipolar Junction Transistor

A lateral heterojunction bipolar transistor (HBT) is formed on a semiconductor-on-insulator substrate. The HBT includes a base including a doped silicon-germanium alloy base region, an emitter including doped silicon and laterally contacting the base, and a collector including doped silicon and laterally contacting the base. Because the collector current is channeled through the doped silicon-germanium base region, the HBT can accommodate a greater current density than a comparable bipolar transistor employing a silicon channel. The base may also include an upper silicon base region and / or a lower silicon base region. In this case, the collector current is concentrated in the doped silicon-germanium base region, thereby minimizing noise introduced to carrier scattering at the periphery of the base. Further, parasitic capacitance is minimized because the emitter-base junction area is the same as the collector-base junction area.
Owner:IBM CORP

LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES

A laser diode, grown on a miscut nonpolar or semipolar substrate, with lower threshold current density and longer stimulated emission wavelength, compared to conventional laser diode structures, wherein the laser diode's (1) n-type layers are grown in a nitrogen carrier gas, (2) quantum well layers and barrier layers are grown at a slower growth rate as compared to other device layers (enabling growth of the p-type layers at higher temperature), (3) high Al content electron blocking layer enables growth of layers above the active region at a higher temperature, and (4) asymmetric AlGaN SPSLS allowed growth of high Al containing p-AlGaN layers. Various other techniques were used to improve the conductivity of the p-type layers and minimize the contact resistance of the contact layer.
Owner:RGT UNIV OF CALIFORNIA

Optical information processing equipment and semiconductor light emitting device suitable therefor

An information processor of a high reliability and a high recording density, and a blue color, blue-violet color and violet color based semiconductor light emitting device operable at a low threshold current density, used for the same, are provided. An optical information processor of a high reliability and a high recording density enables a moving picture, such as a high-definition television picture, to be recorded and reproduced satisfactorily. A barrier layer in a quantum-well active layer of a semiconductor light emitting device is doped with n-type impurities at a high density. Alternatively, the face orientation of a quantum-well active layer of a semiconductor light emitting device is a plane inclined from the (0001) plane, whereby the threshold current value of the semiconductor light emitting device can be decreased. The semiconductor light emitting device is typified by a gallium nitride based compound semiconductor laser device.
Owner:USHIO OPTO SEMICON

Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide

An electrolytic cell and method of electrolysis for producing hydrogen peroxide at a moderate current density while preventing metal deposition on the cathode surface. A feed water from which multivalent metal ions have been removed and in which a salt of a univalent metal, e.g., sodium sulfate, has been dissolved in a given concentration is prepared with an apparatus for removing multivalent metal ions and dissolving a salt in low concentration. The feed water is supplied to an electrolytic cell. Even when electrolysis is continued, almost no deposition of a hydroxide or carbonate occurs on the cathode because multivalent metal ions are not present in the electrolytic solution. Due to the dissolved salt, a sufficient current density is secured to prevent an excessive load from being imposed on the electrodes, etc. Thus, stable production of hydrogen peroxide is possible over a long period of time.
Owner:DE NORA PERMELEC LTD

Magnetoresistive element

A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0≧Ms<√{square root over ( )}{Jw / (6nAt)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
Owner:KIOXIA CORP

Organic light emitting device and flat panel display device comprising the same

Provided are an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the organic layer includes a layer having at least one of the compounds having at least one carbazole group, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime.
Owner:SAMSUNG DISPLAY CO LTD

Minimal device and method for effecting hyperthermia derived anesthesia

InactiveUS9031667B2Improve comfortLess chance of physical damageElectrotherapySurgical needlesFiberMammal
A method and device for inducing anaesthesia in mammals by the application of RF energy to create hyperthermia derived neural anaesthesia. An RF generator drives a plurality of electrodes placed in tissue surrounding the target nerve fiber to desiccate the desired length of nerve fiber to be desiccated in a single deployment. The device allows high-speed selection / de-selection of bipolar electrode pairs or sets under continuous RF excitation. Activation of electrode pairs is adapted in response to sensed current density and temperature (by electrodes not in the current discharge activation phase) in order to create lesions of complex and well defined shape necessary for the production of hyperthermia derived neural anaesthesia.
Owner:INTERVENTION TECH

Minimal Device and Method for Effecting Hyperthermia Derived Anesthesia

InactiveUS20080262490A1Improve comfortLess chance of physical damageElectrotherapySurgical needlesFiberMedicine
A method and device for inducing anaesthesia in mammals by the application of RF energy to create hyperthermia derived neural anaesthesia. An RF generator drives a plurality of electrodes placed in tissue surrounding the target nerve fibre to desiccate the desired length of nerve fibre to be desiccated in a single deployment. The device allows high-speed selection / de-selection of bipolar electrode pairs or sets under continuous RF excitation. Activation of electrode pairs is adapted in response to sensed current density and temperature (by electrodes not in the current discharge activation phase) in order to create lesions of complex and well defined shape necessary for the production of hyperthermia derived neural anaesthesia.
Owner:INTERVENTION TECH

Spin-transfer based MRAM with reduced critical current density

A magnetic random access memory device comprises a spin torque MRAM cell (100) having a reduced switching current (Ic) wherein standard materials may be used for a free layer (108). A fixed magnetic element (112) polarizes electrons passing therethrough, and the free magnetic element (108) having a first plane anisotropy comprises a first magnetization (130) whose direction is varied by the spin torque of the polarized electrons. An insulator (110) is positioned between the fixed magnetic element (112) and the free magnetic element (108), and a keeper layer (104) positioned contiguous to the free magnetic element (108) and having a second plane anisotropy orthogonal to the first plane anisotropy, reduces the first plane anisotropy and hence reduces the spin torque switching current (Ic). The keeper layer (104) may comprise alternating synthetic antiferromagnetic layers (132, 134) of magnetization approximately equal in magnitude and opposite in direction.
Owner:EVERSPIN TECHNOLOGIES

Method for optimizing search for spinal cord stimulation parameter settings

Methods for selecting stimulation parameter sets guide a clinician towards an effective set(s) of stimulation parameters. The clinician first evaluates the effectiveness of a small number of trial stimulation parameters sets from a Measurement Table comprising for example, four stimulation parameter sets, measuring the perception threshold and maximum threshold levels. The maximum comfortable step size and desired field shift resolution are determined, and are used along with the measured threshold levels to determine an appropriate step size to use in the current steering process. In order to maintain paresthesia at a relatively constant level during the steering process, a Superposition Equalization (SEQ) algorithm is used to compensate for the physical characteristics of the lead array, i.e., electrode separation and size. A multiplier is determined and a modifying function is used to apply this multiplier to the electrode energy output during transition to maintain a relatively constant current density.
Owner:BOSTON SCI NEUROMODULATION CORP

Light emitting element and light emitting device

A high efficient white emission light emitting element having peak intensity in each wavelength region of red, green, and blue is provided. Specifically, a white emission light emitting element having an emission spectrum that is independent of current density is provided. A first light emitting layer 312 exhibiting blue emission and a second light emitting layer 313 containing a phosphorescent material that generates simultaneously phosphorescent emission and excimer emission are combined. In order to derive excimer emission from the phosphorescent material, it is effective to disperse a phosphorescent material 323 having a high planarity structure such as platinum complex at a high concentration of at least 10 wt % to a host material 322. Further, the first light emitting layer 312 is provided to be in contact with the second light emitting layer 313 at the side of an anode. Ionization potential of the second light emitting layer 313 is preferably larger by 0.4 eV than that of the first light emitting layer 312.
Owner:SEMICON ENERGY LAB CO LTD

Self-limiting electrosurgical return electrode

A self-limiting electrosurgical return electrode for use with electrosurgery. Through the selection of impedance characteristics for the electrode materials of the principal body of the electrode, and through tailoring of electrode geometries, the return electrode of the present invention is self-regulating and self-limiting as to current density and temperature rise so as to prevent patient trauma. The electrosurgical return electrode includes a sheet of material having an effective bulk impedance equal to or greater than about 4,000 OMEGA.cm and one or more connectors for making electrical connection to the sheet. The effective bulk impedance of the sheet may arise from resistive components, capacitive components, inductive components, or combinations thereof. The configuration of the presently described return electrode allows the electrode to self-limit the electrode's current densities, thereby preventing burning of a patient during surgery. Furthermore, through employment of washable surface areas, the electrode is made readily cleanable, disinfectable, sterilizable, and reusable. An optional sleeve is provided for cooperative use with the electrode.
Owner:MEGADYNE MED PROD INC US

Spiral magnetic transmitter for position measurement system

A transmitter consists of a plurality of magnetic transmitters, each of which is substantially planar and made of a spiral shaped conductor. The result is a transmitter having a substantially uniform cross-sectional current density along the radial direction of the spiral from the center to the periphery. Near the plane of a given spiral, magnetic vectors produced by such a conductor arrangement have improved angular characteristics as compared to prior art systems. This results in a larger region with useful vector crossing angles and operation of the system is enhanced as compared to prior art techniques. The transmitters produce magnetic fields which have a monotonically increasing intensity as one approaches the center of the transmitter spiral from any given direction. This feature simplifies and increases the accuracy of sensor position determination. If desired, the turns of the spiral transmitter may become closer together as one goes from the periphery to the center thereof to thereby concentrate the magnetic field more centrally of the transmitter. Transmitters having one or two spiral coils are also contemplated.
Owner:NORTHERN DIGITAL

Variable current density single needle electroporation system and method

This invention comprises an improved electroporation electrode system comprising a single needle and a ring or donut shaped electrode wherein the difference in surface area of the electrodes provide for a substantial reduction of current density near the surface of the treated tissue and a more concentrated current density sufficient for electroporation only in tissues adjacent to the terminal portion of the single needle electrode. Thus, this invention provides for targeting specific tissue for electroporation and also should provide for lessening the sensation of electric current in the treated tissue.
Owner:INOVIO PHARMA

OLED device with improved power consumption

A method for making an OLED device, comprising: providing a plurality of subpixels of different colors, including at least three gamut-defining subpixels, each subpixel requiring an operating voltage which is based on the maximum current density required by that subpixel; selecting the display operating voltage to be equal to or greater than the maximum required subpixel operating voltage; and selecting the area of the subpixels to reduce the maximum required subpixel operating voltage, thereby reducing the display operating voltage so as to reduce power consumption in the device.
Owner:GLOBAL OLED TECH

Variable resistive element, manufacturing method for same, and non-volatile semiconductor memory device

Provided is a variable resistive element which performs high speed and low power consumption operation. The variable resistive element comprises a metal oxide layer between first and second electrodes wherein electrical resistance between the first and second electrodes reversibly changes in accordance with application of electrical stress across the first and second electrodes. The metal oxide layer has a filament, which is a current path where the density of a current flowing between the first and second electrodes locally increases. A portion including at least the vicinity of an interface between the certain electrode, which is one or both of the first and second electrodes, and the filament, on an interface between the certain electrode and the metal oxide layer is provided with an interface oxide which is an oxide of at least one element included in the certain electrode and different from the oxide of the metal oxide layer.
Owner:SHARP KK +1

Current constricting phase change memory element structure

A layer of nanopaiticles having a dimension on the order of 10 nm is employed to form a current constricting layer or as a hardmask for forming a current constricting layer from an underlying insulator layer. The nanoparticles are preferably self-aligning and / or self-planarizing on the underlying surface. The current constricting layer may be formed within a bottom conductive plate, within a phase change material layer, within a top conductive plate, or within a tapered liner between a tapered via sidewall and a via plug contains either a phase change material or a top conductive material. The current density of the local structure around the current constricting layer is higher than the surrounding area, thus allowing local temperature to rise higher than surrounding material. The total current required to program the phase change memory device, and consequently the size of a programming transistor, is reduced due to the current constricting layer.
Owner:MACRONIX INT CO LTD +2

Microfluidic Device with Minimized Ohmic Resistance

An electrochemical microfluidic device has one or a plurality of microstructures, such as a microchannel, in which an electrically conductive means is integrated to reduce the ohmic resistance within the microstructure and hence to improve electrochemical measurements particularly when large current densities are involved. The electrically conductive means can be connected as a counter-electrode and can be used to re-generate the product of the reaction occurring at the working electrode. A method of fabricating electrochemical microfluidic devices comprising such an electrically conductive means is also disclosed. The invention may particularly be used in all electrochemical sensor applications where detection is performed in small volumes.
Owner:DIAGNOSWISS +1

Method for achieving copper fill of high aspect ratio interconnect features

One aspect of the invention provides a consistent metal electroplating technique to form void-less metal interconnects in sub-micron high aspect ratio features on semiconductor substrates. One embodiment of the invention provides a method for filling sub-micron features on a substrate, comprising reactive precleaning the substrate, depositing a barrier layer on the substrate using high density plasma physical vapor deposition; depositing a seed layer over the barrier layer using high density plasma physical vapor deposition; and electro-chemically depositing a metal using a highly resistive electrolyte and applying a first current density during a first deposition period followed by a second current density during a second period.
Owner:APPLIED MATERIALS INC

Anodizing Aluminum and Alloys Thereof

InactiveUS20080274375A1AnodisationCellsOxalateAnodizing
This invention encompasses methods of producing a colored oxide layer on an aluminum material by anodizing the aluminum material in an electrolyte comprising water, sulfuric acid and oxalic acid. The anodizing step comprises passing at least two sequential current densities through the electrolyte. Methods of making and using article with a colored oxide layer on an aluminum material make by the methods disclosed herein are also disclosed.
Owner:DURACOUCHE INT

Electrochemical method of producing nano-scaled graphene platelets

A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction which uses a carboxylic acid as both an electrolyte and an intercalate source, the layered graphite material as an anode material, and a metal or graphite as a cathode material, and wherein a current is imposed upon the cathode and the anode at a current density for a duration of time sufficient for effecting the electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NOx and SOx, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
Owner:GLOBAL GRAPHENE GRP INC

Electrosurgical device with floating-potential electrodes

InactiveUS20050065510A1Shorten the timeLarge and more controlled and uniform lesionSurgical instruments for heatingElectricityVolumetric Mass Density
An electrosurgical instrument, system and methods are provided for the vaporization, cutting, coagulation, or treatment of tissue in the presence of an electrically conductive fluid medium. The electrosurgical probe comprises at least one active electrode, and at least one “floating” electrode having at least one end in close proximity to at least one active electrode. The floating electrode is not connected in any way to the electrosurgical power supply, but rather has a “floating” potential determined by the shape and position of the electrode. The floating electrode increases current density in the region of the probe distal end.
Owner:ELECTROMEDICAL ASSOCS

Method of manufacturing multi-layer coil and multi-layer coil device

A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Owner:CYNTEC

Spin-torque magnetoresistive memory element and method of fabricating same

A spin-torque magnetoresistive memory element has a high magnetoresistance and low current density. A free magnetic layer is positioned between first and second spin polarizers. A first tunnel barrier is positioned between the first spin polarizer and the free magnetic layer and a second tunnel barrier is positioned between the second spin polarizer and the free magnetic layer. The magnetoresistance ratio of the second tunnel barrier has a value greater than double the magnetoresistance ratio of the first tunnel barrier.
Owner:EVERSPIN TECHNOLOGIES

Magnetoresistive element

A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0≧Ms<√{square root over ( )}{Jw / (6πAt)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
Owner:KIOXIA CORP

Method and device for treating osteoarthritis, cartilage disease, defects and injuries in the human knee

A method of determining the voltage and current output required for the application of specific and selective electric and electromagnetic signals to diseased articular cartilage in the treatment of osteoarthritis, cartilage defects due to trauma or sports injury, or used as an adjunct with other therapies (cell transplantation, tissue-engineered scaffolds, growth factors, etc.) for treating cartilage defects in the human knee joint and a device for delivering such signals to a patient's knee. An analytical model of the human knee is developed whereby the total tissue volume in the human knee may be determined for comparison to the total tissue volume of the diseased tissue in the animal model using electric field and current density histograms. The voltage and current output used in the animal model is scaled based on the ratio of the total tissue volume of the diseased tissue of the human to the total tissue volume of the diseased tissue in the animal model and the resulting field is applied to the diseased tissue of the human using at least two electrodes applied to the knee or a coil or solenoid placed around the knee. The voltage of the signal applied to the electrodes, coil or solenoid is varied based on the size of the knee joint; larger knee joints require larger voltages to generate the effective electric field.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products