Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

286 results about "Rf excitation" patented technology

This magnetic field is called an RF pulse; it is short (a burst or pulse) and the Larmor frequency for MRI is in the radio frequency range (tens of MHz). This process is sometimes called RF excitation of the spin system. Different amounts of rotation can be achieved by applying the oscillating magnetic field for different durations.

Batch-fabricated, rf-interrogated, end transition, chip-scale atomic clock

A chip scale atomic clock is disclosed that provides a low power atomic time/frequency reference that employs direct RF-interrogation on an end-state transition. The atomic time/frequency reference includes an alkali vapor cell containing alkali atoms, preferably cesium atoms, flex circuits for physically supporting, heating, and thermally isolating the alkali vapor cell, a laser source for pumping alkali atoms within the alkali vapor cell into an end resonance state by applying an optical signal along a first axis, a photodetector for detecting a second optical signal emanating from the alkali vapor cell along the first axis, a pair of RF excitation coils for applying an RF-interrogation signal to the alkali atoms along a second axis perpendicular to the first axis, a pair of bias coils for applying a uniform DC magnetic field along the first axis, and a pair of Zeeman coils for applying a Zeeman interrogation signal to the alkali atoms and oriented and configured to apply a time-varying magnetic field along the second axis through the alkali vapor cell. Another flex circuit is used for physically supporting the laser source, for heating the laser source, and for providing thermal isolation of the laser source. The laser source can be a vertical cavity surface emitting laser (VSCEL). The bias coils can be Helmholtz coils.
Owner:SRI INTERNATIONAL

Method, examination apparatus and antenna array for magnetic resonance data acquisition

In a method for implementation of a magnetic resonance examination, and a magnetic resonance apparatus, and an array for acquisition of magnetic resonance signals, and a magnetic resonance signal at a magnetic resonance frequency are acquired from an examination region with an array of frequency conversion units after an RF excitation and are radiated as frequency-converted signals. The resulting signal field is acquired by a number of reception antennas of a second antenna array, which are arranged at different spatial positions and thus allow a spatial resolution of the frequency-converted signals. The acquired acquisition signals are used for image reconstruction.
Owner:SIEMENS HEALTHCARE GMBH

Methods & apparatus for magnetic resonance imaging

A parallel magnetic resonance imaging (MRI) apparatus configurable to image a physical entity comprises:a main magnetic flux source for providing a uniform fixed magnetic field, B0;an RF array system comprising a plurality of RF coils and receivers, said RF system configured for:generating rotating RF excitation magnetic fields B1; andreceiving RF signals due to precessing nuclear magnetization on multiple spatially distinct radio frequency coils and associated receiver channels, said RF system being configured to operate in accordance with a B1 sensitivity encoding technique;a control processor for controlling imaging functionality, collecting image data and effecting data processing of the captured image data the control processor being configured with post processing capability for the B1 sensitivity encoding technique;an image display means for displaying processed image data as resultant images; andan auxiliary magnetic field means capable of producing at least one auxiliary uniform B0 step magnetic field imaging region within the main B0 magnetic field;wherein:the auxiliary magnetic field, means is configured to operate in combination with the RF coil system and the B1 sensitivity encoding technique, the imaging apparatus thereby providing faster image acquisition than that attributed to the speed up factor provided solely by the B1 sensitivity encoding technique.The invention also includes a method of imaging using this apparatus.Furthermore, the invention also includes a method and apparatus for three-dimensional MR imaging using a 1D Multiple Acquisition Micro B0 array coupled with a 2D Multiple Acquisition Micro B0 array.
Owner:UNIV OF SHEFFIELD AT WESTERN BANK THE

MR imaging using nested pulse sequence involving IR pulse

In addition to the known MT (magnetization transfer) effect, an RMT (reverse MT) is newly found, which increases a detected MR signal strength. Both the MT and RMT effects can be explained with mutual interaction, such as phenomena of chemical exchange and / or cross relaxation, acted between a pool of water proton spins and another pool of macromolecule proton spins, for example, within an object. In order to enhance the MT or RMT effect, the frequency bandwidths of RF pulses, such as a 90° RF exciting pulse in a SE or FSE method, an inversion pulse in a FLAIR or fast FLAIR method, and others, are controlled. To enhance the MT effect, the bandwidth is controlled into a wider value (approx. more than 1250 Hz) than the normally (conventionally) used bandwidth, while to obtain the RMT effect, the bandwidth is controlled into a narrower value (approx. less than 1000 Hz) than the normally used bandwidth. Actively controlling the MT or RMT effect permits changed image contrast in MR imaging.
Owner:KK TOSHIBA

Multiplicative increase in MRI data acquisition with multi-band RF excitation pulses in a simultaneous image refocusing pulse sequence

Disclosed are methods and systems for carrying out super-multiplexed magnetic resonance imaging that entwines techniques previously used individually and independently of each other in Simultaneous Echo (of Imaging) Refocusing (SER or SIR) and Multi-Band (MB) excitation, in a single pulse sequence that provides a multiplication rather than summation of desirable effects while suppressing undesirable effects of each of the techniques that previously were used independently.
Owner:FEINBERG DAVID +1

Methods and systems for fast field zeroing for magnetoencephalography (MEG)

A method of operating an optically pumped magnetometer (OPM) includes directing a light beam through a vapor cell of the OPM including a vapor of atoms; applying RF excitation to cause spins of the atoms to precess; measuring a frequency of the precession; for each of a plurality of different axes relative to the vapor cell, directing a light beam through the vapor cell, applying a magnetic field through the vapor cell along the axis, applying RF excitation to cause spins of the atoms to precess, and measuring a frequency of the precession in the applied magnetic field; determining magnitude and components of an ambient background magnetic field along the axes using the measured frequencies; and applying a magnetic field based on the components around the vapor cell to counteract the ambient background magnetic field to facilitate operation of the OPM in a spin exchange relaxation free (SERF) mode.
Owner:HI LLC

Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock

A chip scale atomic clock is disclosed that provides a low power atomic time / frequency reference that employs direct RF-interrogation on an end-state transition. The atomic time / frequency reference includes an alkali vapor cell containing alkali atoms, preferably cesium atoms, flex circuits for physically supporting, heating, and thermally isolating the alkali vapor cell, a laser source for pumping alkali atoms within the alkali vapor cell into an end resonance state by applying an optical signal along a first axis, a photodetector for detecting a second optical signal emanating from the alkali vapor cell along the first axis, a pair of RF excitation coils for applying an RF-interrogation signal to the alkali atoms along a second axis perpendicular to the first axis, a pair of bias coils for applying a uniform DC magnetic field along the first axis, and a pair of Zeeman coils for applying a Zeeman interrogation signal to the alkali atoms and oriented and configured to apply a time-varying magnetic field along the second axis through the alkali vapor cell. Another flex circuit is used for physically supporting the laser source, for heating the laser source, and for providing thermal isolation of the laser source. The laser source can be a vertical cavity surface emitting laser (VSCEL). The bias coils can be Helmholtz coils.
Owner:SRI INTERNATIONAL

Simultaneous excitation and acquisition in magnetic resonance

A method for magnetic resonance spectroscopy (=MRS) or magnetic resonance imaging (=MRI) in which an NMR time-domain signal is created by an RF excitation pulse applied to an object in the presence of an applied magnetic field that may depend on spatial position and/or time, the time-domain signal being generated by an excited transverse nuclear magnetisation precessing about the applied magnetic field, whereby the RF excitation pulse is adapted to cover a whole range of NMR frequencies of interest present in the object, and time-domain signal acquisition takes place during, or during and after the application of the RF excitation pulse, is characterized in that spectral or image data are reconstructed by a matrix product of a reconstruction matrix and a vector of time-domain signal points, the reconstruction matrix being an inversion of an encoding matrix A whose elements are calculated using the formula:
Anα=m=0n-1PmΦ(n,m,α),
wherein n is the running number of a time-domain signal point, α is the running number of a discrete image or spectral element, Pm is the m-th discrete element of the RF excitation pulse in the time-domain, and Φ(n,m,α) is the phase accrued by the transverse nuclear magnetisation related to the discrete image or spectral element a in the time between the discrete RF excitation pulse element Pm and the time-domain signal point n under the influence of the applied magnetic field. An improved method for reconstructing spectral or image data from time-domain signal acquired as describe above is thereby provided which can be used more versatilely than conventional Fourier transform.
Owner:BRUKER BIOSPIN MRI

Methods & apparatus for magnetic resonance imaging

A parallel magnetic resonance imaging (MRI) apparatus configurable to image a physical entity comprises: a main magnetic flux source for providing a uniform fixed magnetic field, Balpha; an RF array system comprising a plurality of RF coils and receivers, said RF system configured for: generating rotating RF excitation magnetic fields B1; and receiving RF signals due to precessing nuclear magnetization on multiple spatially distinct radio frequency coils and associated receiver channels, said RF system being configured to operate in accordance with a B1 sensitivity encoding technique; a control processor for controlling imaging functionality, collecting image data and effecting data processing of the captured image data the control processor being configured with post processing capability for the B1 sensitivity encoding technique; an image display means for displaying processed image data as resultant images; and an auxiliary magnetic field means capable of producing at least one auxiliary uniform Bo step magnetic field imaging region within the main B0 magnetic field; wherein: the auxiliary magnetic field, means is configured to operate in combination with the RF coil system and the B1 sensitivity encoding technique, the imaging apparatus thereby providing faster image acquisition than that attributed to the speed up factor provided solely by the B1 sensitivity encoding technique. The invention also includes a method of imaging using this apparatus. Furthermore, the invention also includes a method and apparatus for three-dimensional MR imaging using a 1D Multiple Acquisition Micro Bo array coupled with a 2D Multiple Acquisition Micro Bo array.
Owner:UNIV OF SHEFFIELD AT WESTERN BANK THE

System for Accelerated Segmented MR Image Data Acquisition

ActiveUS20140037171A1Accelerates segmented magnetic resonance (MR) image data acquisitionReconstruction from projectionMagnetic measurementsMagnetic field gradientResonance
A system for accelerated segmented magnetic resonance (MR) image data acquisition includes an RF (Radio Frequency) signal generator and a magnetic field gradient generator. The RF signal generator generates RF excitation pulses in anatomy and enabling subsequent acquisition of associated RF echo data. The magnetic field gradient generator generates magnetic field gradients for anatomical volume selection, phase encoding, and readout RF data acquisition in a three dimensional (3D) anatomical volume. The RF signal generator and the magnetic field gradient generator acquire consecutive segments of k-space line data representative of an individual image slice in a gradient echo method by adaptively varying RF excitation pulse flip angle between acquisition of the consecutive segments.
Owner:SIEMENS HEATHCARE GMBH +1

Magnetic resonance tomography apparatus and method for representation of tissue with very short T2 relaxation time

In a magnetic resonance tomography apparatus and method for determination of T2-weighted images of tissue with short T2 time, in the framework of a steady-state free precession sequence with non-slice-selective RF excitation pulses and projection-reconstruction methods, in each sequence repetition a first steady-state is read out in the form of a half echo and a second steady-state signal is read out in the form of a further half echo with very short echo times TE1 and TE2=2TR−TE1, and are combined by weighted addition such that an MRT image of tissue with very short T2 time is obtained with the sequence.
Owner:SIEMENS AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products