Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

426results about "Magnetic field offset compensation" patented technology

Device for high-resolution measurement of magnetic fields

A device is proposed for high-resolution measurement, in particular for high-resolution absolute measurement of magnetic fields, having a network (1) of transitions (3) between superconductors (5, 6) which exhibit Josephson effects, called junctions below, the network comprising closed meshes (7, 8, 9, 10, 11, 12, 13), denoted by cells below, which in each case have junctions (3), which junctions are connected in a superconducting fashion, and at least three of these cells being connected in a superconducting and/or nonsuperconducting fashion. The object of the invention consists in further developing this device in such a way that it is possible to make absolute measurements of magnetic fields in a highly sensitive fashion. This object is achieved by virtue of the fact that the junctions (3) of the at least three cells (7, 8, 9) can be energized in such a way that a time-variant voltage drops in each case across at least two junctions of a cell, the time average of which voltage does not vanish, and in that the at least three cells are configured differently geometrically in such a way that the magnetic fluxes enclosed by the cells in the case of an existing magnetic field differ from one another in such a way that the frequency spectrum of the voltage response function has no significant Phi0-periodic component with reference to the magnetic flux.
Owner:QEST QUANTENELEKTRONISCHE SYST

Calibratable Multidimensional Magnetic Point Sensor

A calibratable magnetic field sensor for sensing a first and a second spatial component of a magnetic field in a reference point, wherein the magnetic field includes a first and a second measurement field component and/or a first and a second calibration field component. The magnetic filed sensor includes a first sensor element arrangement including at least a first and a second sensor element for sensing the first magnetic field component, which includes a first measurement field component and/or a first calibration field component, with respect to a first spatial axis in the reference point. Furthermore, the magnetic field sensor includes a second sensor element arrangement for sensing the second magnetic field component, which includes a second measurement field component and/or a second calibration field component, with respect to a second spatial axis in the reference point. The magnetic filed sensor also includes an excitation line arranged with respect to the first sensor element arrangement so that, when impressing a default current into the excitation line, a pair of different asymmetrical default calibration field components in the first sensor element and in the second sensor element is generated with respect to the first spatial axis in the first sensor element arrangement, wherein the two spatial axes pass along linearly independent position vectors.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Single chip difference free layer push-pull type magnetic field sensor electric bridge and preparation method thereof

The invention provides a single chip difference free layer push-pull type magnetic field sensor electric bridge and a preparation method thereof. The magnetic field sensor electric bridge comprises a substrate, a staggered soft magnetic flux concentrator array and a GMR spin valve or a TMR magnetic resistor sensor unit array which is placed on the substrate and has an X-direction magnetic sensitive direction. Each soft magnetic flux concentrator comprises edges parallel to the X axis, edges parallel to the Y axis and four corners, and the four corners are sequentially marked as A, B, C and D from the upper left position in the clockwise direction. Magnetic resistor sensor units are placed at the gaps between the soft magnetic flux concentrators. Meanwhile, the magnetic resistor sensor units corresponding to the corners A and the corners C of the soft magnetic flux concentrators and the magnetic resistor sensor units corresponding to the corners B and the corners D are defined as push magnetic resistor sensor units and pull magnetic resistor sensor units respectively. The push magnetic resistor sensor units are electrically connected to form one or more push arms, the pull magnetic sensor units are electrically connected to form one or more pull arms, and the push arms and the pull arms are electrically connected to form a push-pull type sensor bridge. According to the single chip difference free layer push-pull type magnetic field sensor electric bridge and the preparation method therefore, the power consumption is low, the magnetic field sensitivity is high, and a magnetic field in the Y direction can be measured.
Owner:MULTIDIMENSION TECH CO LTD

Calibratable multidimensional magnetic point sensor

A calibratable magnetic field sensor for sensing a first and a second spatial component of a magnetic field in a reference point, wherein the magnetic field includes a first and a second measurement field component and / or a first and a second calibration field component. The magnetic filed sensor includes a first sensor element arrangement including at least a first and a second sensor element for sensing the first magnetic field component, which includes a first measurement field component and / or a first calibration field component, with respect to a first spatial axis in the reference point. Furthermore, the magnetic field sensor includes a second sensor element arrangement for sensing the second magnetic field component, which includes a second measurement field component and / or a second calibration field component, with respect to a second spatial axis in the reference point. The magnetic filed sensor also includes an excitation line arranged with respect to the first sensor element arrangement so that, when impressing a default current into the excitation line, a pair of different asymmetrical default calibration field components in the first sensor element and in the second sensor element is generated with respect to the first spatial axis in the first sensor element arrangement, wherein the two spatial axes pass along linearly independent position vectors.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products