Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

524 results about "Precession" patented technology

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

Power floating production and ship propulsion supported by gyroscope and energized by seas

To access the inexhaustible energy source like seas and oceans we need to learn how to convert its wave motion to the customized power for our ships, for our existing littoral settlements and our future ocean settlements. Here is an attempt to develop method of the conversion the wave energy to power with floating means based on a gyroscope strong capability to resist against the outer force moment trying to tilt it to any side.The gyroscope is used as the fulcrum torque dynamic supporting instead traditional static base used in the issued devices. Alternate force moment created by the waves and transmitted to the gyroscope (via the floating body and the wave energy converter) inducts alternative gyro precession so as the gyroscope axis hesitates about mean position. This is important because it allows the gyroscope to keep dynamic fulcrum torque in unlimited time.The few gyroscope precession control devices and methods have been developed to compensate other reasons enforcing the mean gyro axis to drift from initial plumb.Also here are developed the new ship architecture with the separated floating gyro section. The wagging propulsor driven by the pitching and with strokes amplified by the fulcrum gyro section, the spring moment generator for the gyroscope drift compensation, non gyroscope floating power station able to derive, convert, accumulate and transmit wave energy to consumer also have been developed here.
Owner:GORSHKOV VLADISLAV VASILYEVICH

Attitude control system for space vehicle and method thereof

The invention discloses an attitude control system for space vehicle and a method thereof. The control system has only one biased momentum wheel, one set of tri-axial magnetic torquer and one attitude controller loaded with algorithm. The method comprises a step of rate damping controlling, a step of initially capturing controlling and a step of stationarity controlling. At the rate damping stage, geomagnetism change is used to control the magnetic control of three passages of a satellite by B-dot; at the initially capturing stage, the magnetic control is realized, PD control is performed by pitching and the passages are rolled and yawed to carry out nutation and precession composite control; at the stationarity controlling stage, the magnetic control is realized, PD control is performed by pitching and the passages are rolled and yawed to carry out nutation and precession composite control. The capturing stage and the stationarity controlling stage fully depend on magnetic torquer to perform positive magnetic control, thereby changing which a satellite only uses a magnetic torquer to carry out unload of the momentum wheel or auxiliary magnetic control, so as to refine system configuration to further improve reliability of the system. Momentum of a satellite is biased to rotate on the ground, so as to ensure stable separation of the satellite without performing air injection control. Therefore, the magnetic torquer can be used for realizing fast and stable initial rate damping.
Owner:SHANGHAI ENG CENT FOR MICROSATELLITES

Inertia and magnetic field integration measuring method based on SERF (spin-exchange-relaxation-free) atomic spin effect

The invention provides an inertia and magnetic field integration measuring method based on an SERF (spin-exchange-relaxation-free) atomic spin effect. The inertia and magnetic field integration measuring method based on the SERF atomic spin effect comprises the following steps: firstly establishing an overall model for the inertia and magnetic field integration measurement; secondly, manufacturing a measurement sensing unit, and carrying out high-frequency alternating current non-magnetic electric heating; starting a driving laser (z-axis) for carrying out optical pumping on the sensing unit; and emitting a detection laser (x-axis) in a direction vertical to the z-axis; thirdly, carrying out driving magnetic compensation through a three-dimensional magnetic compensation coil so as to counteract a magnetic field of the outside world; fourthly, carrying out azimuth alignment on a main magnetic field and the driving laser and hyperpolarization nucleon self-spin so as to realize the nuclear spin-electron spin strong coupling; fifthly, extracting the information of the atomic spin precession movement in the detection laser by adopting a closed-loop faraday modulation detection method, and obtaining inertia angular speed information; and finally, obtaining the current value of a compensation signal of the magnetic field, and calculating to obtain the information of the current magnetic field. The inertia and magnetic field integration measuring method based on the SERF atomic spin effect has the characteristics of high measurement accuracy and strong autonomy.
Owner:BEIHANG UNIV +1

System and method for providing gyroscopic stabilization to a wheeled vehicle

This invention provides a stabilizing system and method for two-wheeled vehicles that affords the rider no restriction on the full range of movements (banks, leans, etc.) common to bicycles, but that provides greater stability during turns and other maneuvers so that an unintentional bank or tilt (potentially causing a fall) is less likely, even at relatively slow speeds and startup. A rotating mass of predetermined mass-value and radial mass-distribution is provided coaxially with the front axle. The mass is supported on bearings so as to freewheel with respect to the rotation of the front wheel. As such it can be induced to spin significantly faster than the front wheel thereby generating a gyroscopic effect at the front wheel about the axle. This gyroscopic effect influences the steering of the wheel by the rider. Due to precession, the wheel tends to follow any excessive bank by the vehicle, ensuring that the rider can “steer-out-of” an unintended tilt or bank. Likewise, the gyroscopic effect limits the rider's ability to execute excessive steering, thereby preventing jackknife movements. The mass can be an electric-motor-driven flywheel within a shell housing that includes a battery, control system and drive motor. The drive motor engages a surface of the flywheel with a drive tire in a resilient manner to reduce potential damage to the motor.
Owner:THE GYROBIKE

Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor

A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information. The method and apparatus include steps and means for selecting preferably three astronomical objects using a histogram method and determining a square of a first radius (R12) of a track of a first astronomical object; determining a square of a second radius (R22) of a track of a second astronomical object; determining a square of a third radius (R32) of a track of a third astronomical object; determining the inertial attitude of the spin axis using the squares of the first, second, and third radii (R12, R22, and R32) to calculate pitch, yaw, and roll rate; determining a change in the pitch and yaw of the artificial satellite; and controlling on-board generated current flow to various orthogonally-disposed current-carrying loops to act against the Earth's magnetic field and to apply gyroscopic precession to the spinning satellite to correct and maintain its optimum inertial attitude.
Owner:JOHNSON KARA WHITNEY +1

Quick medicine mashing device for Chinese pharmaceutical manufacturing

InactiveCN107008526AImprove the efficiency of pounding medicineImprove the quality of pounding medicineGrain treatmentsGear wheelReciprocating motion
The invention discloses a rapid pounding device for traditional Chinese medicine, which comprises a support base and a drive box. Support columns are connected to both sides of the upper end of the support base. The upper end of the support column is connected to a top plate. The middle part is connected with a rotating wheel, and the front end of the middle part of the rotating wheel is connected with a connecting rod. The shaft position is connected with a driven pulley, the driven pulley is connected with a driving belt, the other end of the driving belt is connected with a driving pulley, the rear end of the driving pulley is connected with a rotating gear at the coaxial position, and the lower end of the rotating gear is meshed with a rack and a gear. The left end of the bar is connected with a right moving rod, the middle part of the right end of the right moving rod is connected with a right limit block, and the left end of the right moving rod is connected with a pounding medicine groove. The present invention realizes the up and down reciprocating motion of the tamping hammer and the left and right reciprocating motion of the ramming trough, greatly improving the ramming quality and ramming efficiency.
Owner:六安市我罗生工业设计有限公司

Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor

A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information. The method and apparatus include steps and means for selecting preferably three astronomical objects using a histogram method and determining a square of a first radius (R12) of a track of a first astronomical object; determining a square of a second radius (R22) of a track of a second astronomical object; determining a square of a third radius (R32) of a track of a third astronomical object; determining the inertial attitude of the spin axis using the squares of the first, second, and third radii (R12, R22, and R32) to calculate pitch, yaw, and roll rate; determining a change in the pitch and yaw of the artificial satellite; and controlling on-board generated current flow to various orthogonally-disposed current-carrying loops to act against the Earth's magnetic field and to apply gyroscopic precession to the spinning satellite to correct and maintain its optimum inertial attitude.
Owner:JOHNSON KARA WHITNEY +1

Atomic spin precession detection method and device based on circular polarization detection light

ActiveCN104677508AEffectively isolate the influence of light intensityIsolate the effect of light intensityOptical measurementsPrecessionPolarization-maintaining optical fiber
The invention discloses an atomic spin precession detection method and device based on circular polarization detection light. The atomic spin precession detection method is based on spinning light characteristics of polarized atoms of an atom air chamber, left circular polarization light and right circular polarization light are formed through double refracted light paths, the left circular polarization light and the right circular polarization light are fed into the atom air chamber, phase position difference in direct proportion to atomic spin precession is generated from left spinning circular polarization light and right spinning circular polarization light of the air chamber, outgoing circular polarization light is fed back along the original path by using a reflection mirror, the left and right spinning directions of the left spinning circular polarization light and the right spinning circular polarization light are switched, the phase position difference is multiplied, the left spinning circular polarization light and the right spinning circular polarization light are interfered according to a circular polarization light interference technique, and thus phase position difference measurement and high-sensitivity detection on atomic spin precession detection are achieved. Atomic spin precession detection can be achieved, and the atomic spin precession detection device is high in precision, sensitivity, and anti-interference capability and small in size. The method and the device are practical, and super high in sensitivity and precision when provided for an atomic spin precession sensor based on atomic spin precession detection.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products