Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

539 results about "Space vehicle" patented technology

A space vehicle or spaceship is a rocket-powered vehicle used to transport robotic spacecraft or human carrying vehicles between the Earth's surface and outer space. The earliest space vehicles were expendable launch systems, consisting of rocket launch vehicles carrying spacecraft payloads (satellites or human-bearing space capsules) which were relatively small portions of the total vehicle size and mass. The single or multistage rocket without the payload is referred to as a launch vehicle. Most space vehicles in production use are expendable systems, although reusable launch systems have been envisioned since the late 1960s.

Attitude control system for space vehicle and method thereof

The invention discloses an attitude control system for space vehicle and a method thereof. The control system has only one biased momentum wheel, one set of tri-axial magnetic torquer and one attitude controller loaded with algorithm. The method comprises a step of rate damping controlling, a step of initially capturing controlling and a step of stationarity controlling. At the rate damping stage, geomagnetism change is used to control the magnetic control of three passages of a satellite by B-dot; at the initially capturing stage, the magnetic control is realized, PD control is performed by pitching and the passages are rolled and yawed to carry out nutation and precession composite control; at the stationarity controlling stage, the magnetic control is realized, PD control is performed by pitching and the passages are rolled and yawed to carry out nutation and precession composite control. The capturing stage and the stationarity controlling stage fully depend on magnetic torquer to perform positive magnetic control, thereby changing which a satellite only uses a magnetic torquer to carry out unload of the momentum wheel or auxiliary magnetic control, so as to refine system configuration to further improve reliability of the system. Momentum of a satellite is biased to rotate on the ground, so as to ensure stable separation of the satellite without performing air injection control. Therefore, the magnetic torquer can be used for realizing fast and stable initial rate damping.
Owner:SHANGHAI ENG CENT FOR MICROSATELLITES

Fault-tolerant sliding-mode control method for near-space vehicle

The invention discloses a fault-tolerant sliding-mode control method for a near-space vehicle. According to the fault-tolerant sliding-mode control method for the near-space vehicle, for the situation that the order of the magnitude of external disturbance in a quick loop and slow loop system is greatly larger than the order of the magnitude of uncertain times of the system, the nonlinear disturbance observer technology is used for processing hybrid disturbance, and unknown hybrid disturbance is estimated by a disturbance observer through known system information; in order to solve the problem that saturation of the control surface of the near-space vehicle is limited, the upper bound of the deflection angle output of a steering engine is applied to design of a control law, it is guaranteed that the input is within a certain range, auxiliary variables are designed, the deflection angle output of the steering engine is automatically adjusted through the self-adaption law, and therefore the situation that when the upper bound of the deflection angle is too large, the output is too large is avoided; a compensator is established through a radial basis function neural network and is used for fault-tolerant compensation when the steering engine breaks down, and therefore the problem that the steering engine of the near-space vehicle breaks down is solved. By the adoption of the fault-tolerant sliding-mode control method for the near-space vehicle, under the conditions of system uncertainties, unknown external disturbance, limited input saturation and a fault of the steering engine, the near-space vehicle has good control performance.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Separation mechanism of on-board equipment

The invention relates to a separation mechanism of on-board equipment, comprising a mounting base body, a plurality of compressing clamping blocks, a connecting flange, a compressing and releasing mechanism and an unlocking device; the compressing and releasing mechanism comprises a connecting shaft and a connecting spring, the unlocking device comprises a locking dog, a locking dog shaft, a tension spring, a pre-tightening rope and a flame cutter; the locking dog is adopted to lead the direction of the pre-tightening force of the mechanism, directly acted on the compressing clamping block, to be changed, so as to lead the direction of the pre-tightening force to be downwards; the force is transmitted to the compressing clamping block by the connecting shaft, and the structure is simpler and is easier to realize compared with the prior art; in the invention, a compression matching way of the compressing clamping blocks is adopted without high precision of a space vehicle or target load at the connecting position for separation, thereby effectively reducing the machining difficulty of the space vehicle or the target load at the connecting position for separation; a way that multiple groups are matched is adopted, so as to achieve the using requirements of universalization, modularization and serialization.
Owner:AEROSPACE DONGFANGHONG SATELLITE

Method and a system for putting a space vehicle into orbit, using thrusters of high specific impulse

The method serves to place a space vehicle, such as a satellite, on a target orbit such as the orbit adapted to normal operation of the space vehicle and starting from an elliptical initial orbit that is significantly different from, and in particular more eccentric than the target orbit. The space vehicle is caused to describe a spiral trajectory made up of a plurality of intermediate orbits while a set of high specific impulse thrusters mounted on the space vehicle are fired continuously and without interruption, thereby causing the spiral trajectory to vary so that on each successive revolution, at least during a first stage of the maneuver, perigee altitude increases, apogee altitude varies in a desired direction, and any difference in inclination between the intermediate orbit and the target orbit is decreased, after which, at least during a second stage of the maneuver, changes in perigee altitude and in apogee altitude are controlled individually in predetermined constant directions, while any difference in inclination between the intermediate orbit and the target orbit continues to be reduced until the apogee altitude, the perigee altitude, and the orbital inclination of an intermediate orbit of the space vehicle have substantially the values of the target orbit.
Owner:SN DETUDE & DE CONSTR DE MOTEURS DAVIATION S N E C M A

Centripetal reflex method of space launch

A method of launching space vehicles by towing them aloft, then twirling them around a large transport aircraft (40) at the center of a formation (AA) of other tow aircraft (28, 34) and other devices of the invention. A lengthy, semi-rigid tow pipeline (14) serves as a conduit for the transfer of fuels and oxidizers, as the tow cable, and as an energy storage device that reflexes efficiently when it is flexed. The flexing of tow pipeline (14) is caused by a parachute (22) acting in conjunction with all the aircraft making the tighest turn they are capable of doing. Tow aircraft in certain arrays (28) are joined to tow pipeline (14) by sliding trollies (26) that also host canard rotor wings for the aerodynamic support of the main tube (12). The tow trollies (26) aid the sliding tow aircraft arrays (28) in gaining mechanical advantage to accelerate the space vehicle. The space vehicle may also burn its own motors for a longer-than-usual time as it gains in angular velocity because its fuels are replenished by a pipeline that automatically increases the pressure and volume of fuel flow as the angular acceleration increases. The tow pipeline (14) features a micro-hole laminar lift foil (50) on the top surface of the wing and on the bottom. By balancing the vacuum level in the plurality of chamber underneath the plurality of lift foil 50, the pilot or autopilot has an effective way to control the flight characteristics of the tow pipeline (14). In some embodiments the micro-hole laminar lift foil (50) on the top and bottom will made of transparent hollow wire segments or other material so arranged as to pass ambient light through to photo-voltaic cells below that convert sunlight to electrical energy.
Owner:COOK MICHAEL LEON

Rolling compounding method for aluminum/magnesium/titanium three-layer composite plate

The invention discloses a rolling compounding method for an aluminum/magnesium/titanium three-layer composite plate. The characteristics of high strength of titanium alloy, low melting point and good vibration reducing performance of magnesium alloy, good plasticity and space adaptation of the aluminum alloy, and the like, are utilized and the excellent characteristics of respective component metals are combined by the aluminum/magnesium/titanium three-layer composite plate provided by the invention, so that the high-speed impact damage resisting property which the component metals do not own is acquired. Through the control on the ratio and interface of the aluminum alloy, the magnesium alloy and titanium alloy, the degree of fragmentation, melting and atomizing of shred cloud after the buffer composite plate is subjected to high-speed impact is changed and adjusted, so that the form of the shred cloud is changed, the degree of impact damage to a backplate is reduced, and the high-speed impact damage resisting property is increased. The aluminum/magnesium/titanium three-layer composite plate is applied to an outer layer buffer plate in an outer layer protecting structure of an aerospace vehicle and can be used for replacing a traditional single aluminum alloy material. The space environmental effect and protecting level of the space vehicle are increased; the design level of the space vehicle are greatly promoted, and the service life of the space vehicle are greatly prolonged.
Owner:CHONGQING UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products