Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1271 results about "Attitude control" patented technology

Attitude control is controlling the orientation of an object with respect to an inertial frame of reference or another entity like the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the torques needed to re-orient the vehicle to a desired attitude, and algorithms to command the actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired attitude. The integrated field that studies the combination of sensors, actuators and algorithms is called "Guidance, Navigation and Control" (GNC).

Small four-rotor aircraft control system and method based on airborne sensor

The invention relates to the technical field of four-rotor aircrafts, in particular to a small four-rotor aircraft control system and method based on an airborne sensor. The small four-rotor aircraft control system based on the airborne sensor comprises an inertia measurement unit module, a microprocessor, an electronic speed controller, an ultrasonic sensor, an optical flow sensor, a camera, a wireless module and a DC brushless motor. By merging the information of a light and low-cost airborne sensor system, the six-DOF flight attitude of the aircraft is estimated in real time, and a closed-loop control strategy comprising inner-loop attitude control and outer-ring position control is designed. Under the environment without a GPS or an indoor positioning system, flight path control and aircraft formation control based on the leader followed strategy over the rotorcraft are achieved through the airborne sensor system and the microprocessor, wherein the flight path control comprises autonomous vertical take-off and landing, indoor accurate positioning, autonomous hovering and autonomous flight path point tracking. According to the small four-rotor aircraft control system and method, a reliable, accurate and low-cost control strategy is provided for achieving autonomous flight of the rotorcraft.
Owner:SUN YAT SEN UNIV

Self-adaptive index time varying slip form posture control method of reentry flight vehicle

The invention relates to a self-adaptive index time varying slip form posture control method of a reentry flight vehicle, belonging to the technical field of flight vehicles. The method comprises the steps of firstly establishing a posture motion equation in a mode that a powerless reentry flight vehicle model is used as an object; secondly modifying the equation into the mode of an MIMO (Multiple Input Multiple Output) affine non-linear system, further applying a feedback linearization principle to carry out linearization processing so as to obtain a three-channel linearization model of pitching, rolling and yawing; aiming at the obtained linearization system, designing a modified self-adaptive index time varying slip form controller; and subsequently obtaining a control moment instruction for the posture control of the reentry flight vehicle, and inputting the control moment instruction into the reentry flight vehicle so as to control the posture. By combining the index time varying slip form control with a self-adaptive method, the problem of excessive adaptation of switch gain in the self-adaptive slip form control is solved to a certain extent, the uncertainty of system parameters and the influence of external disturbance can be suppressed effectively, and the precise posture control is realized.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method

The invention relates to a different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method. The different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method aims at solving the problems that the uncertainty of inertia of a spacecraft is not considered in the prior art, the convergence time can not be freely adjusted depending on the state initial value, and compensating moment generated in the singular direction of a flywheel needs to be designed artificially. The method comprises the particular steps that 1, a tracking satellite and a target satellite are supposed to be located on a different-surface crossover track, and the expected posture needs to be determined; 2, an expected posture tracking control rule is designed; 3, buffeting of the expected posture tracking control rule is eliminated; 4, the expected posture of the crossed points of the tracking satellite and the target satellite changes along with distance between the crossed points of the tracking satellite and the target satellite, a configuration scheme of an execution mechanism is determined according to the expected posture tracking control rule, and the expected posture control torque is solved. The different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method is applied to the field of satellite control.
Owner:HARBIN INST OF TECH

Low-altitude autonomous navigation system for rotary-wing unmanned plane

The invention discloses a low-altitude autonomous navigation system for a rotary-wing unmanned plane. The low-altitude autonomous navigation system is composed of a data acquisition device, a data preprocessing module, a data fusion module, a guidance control loop module and an attitude control loop module. The data preprocessing module is used for carrying out sampling filtering and error compensation on current location data information collected by the data acquisition device; the data fusion module is used for carrying out fusion and updating and obtaining a current position and speed of the rotary-wing unmanned plane; the guidance control loop module is used for calculating an expected attitude angle and an expected height value; and the attitude control loop module is used for generating a controlled quantity. According to the technical scheme, a problem of poor attitude estimation precision of the conventional navigation system can be solved; and requirements of high-precision heading attitude calculation and position and speed fusion of the rotary-wing unmanned plane can be met. High-precision filtering of the system is realized. On the basis of the analysis and calculation of the autonomous navigation system, the flight route and height can be corrected and the flight attitude can be adjusted autonomously; and the autonomous flight of the unmanned plane can be realized.
Owner:NORTHEAST AGRICULTURAL UNIVERSITY

Satellite attitude orbit determining system and method

The invention provides a satellite attitude orbit determining system and a satellite attitude orbit determining method. The method comprises the following steps of: acquiring a pseudo-range, a pseudo-range rate and a carrier phase data from satellite navigation signals from an attitude orbit acquisition module by an attitude orbit determining module in an on-satellite subsystem, generating inter-satellite relative position information, inter-satellite relative velocity information and three-dimensional position information by using the pseudo-range, the pseudo-range rate and the carrier phase data, performing a federal filtering algorithm on the three-dimensional position information and a satellite starlight elevation to generate position information and velocity information of a relative satellite inertia system, performing joint attitude determining by using the satellite navigation signals, the satellite attitude angle information and the satellite starlight elevation to generate a triaxial angle, and performing optimal estimation on the triaxial angle to acquire a triaxial attitude angle and a triaxial attitude angular velocity of a satellite; and performing orbital transfer and attitude adjusting control by an attitude orbit control computer according to the information output by the attitude orbit determining module. By adopting the system and the method, the attitude determining precision and the orbit determining instantaneity can be improved.
Owner:北京国科环宇科技股份有限公司

Multi-rotor type unmanned aircraft system with fire detecting function

The invention provides a multi-rotor type unmanned aircraft system with a fire detecting function. Six engine arms and a frame form a body frame of the multi-rotor type unmanned aircraft system; a motor and an electronic speed regulator are connected with each other to control the rotation speed of propeller blades; a landing gear is used for an aircraft to stably land during landing; an unmanned aircraft flight control system is used for controlling stable postures of the aircraft; a sensor is connected with the unmanned aircraft flight control system; a small-sized control computer is connected with laser distance measuring sensors through communication; a processed signal is input into the unmanned aircraft flight control system to control three-dimensional positions and postures of the aircraft indoors; high-definition cameras are connected with an image transmitting device to collect video images of environment; and the image transmitting device is used for transmitting a video image signal to a ground station device so as to realize real-time observation. The multi-rotor type unmanned aircraft system with the fire detecting function, provided by the invention, is advantaged in that the multi-rotor type unmanned aircraft system can autonomously fly under a complicated environment, automatically detect fires in real time, automatically avoid obstacles and protect personal safety; remote monitoring and remote real-time communication are realized; data can be saved and replayed and so on.
Owner:湖北省机电研究设计院股份公司

Method for controlling attitude of aircraft based on L1 adaptive control

The invention relates to a method for controlling an attitude of an aircraft based on L1 adaptive control, and belongs to the technical field of automatic unmanned aircraft attitude control. The method comprises the following steps of: inputting a control signal u(t) of a system into a state observer to acquire an aircraft state estimated value, taking the aircraft state estimated value as the input of an adaptive law to acquire the uncertainty of the system and an estimated value of external disturbance, inputting a set reference signal r(t) into an adaptive control law to acquire a system adaptive control law, inputting the system adaptive control law into a low-pass filter to acquire a control signal u2(t), superposing the control signal u2(t) with a linear state feedback control law u1(t), inputting the control signal u2(t) into the state observer, applying the control signal u2(t) to a controlled object, feeding an actual attitude value x(t) back to the adaptive law, the adaptive control law and the state observer by the controlled object, and thus forming an L1 adaptive closed-loop control system. Aircraft attitude L1 adaptive control established by the method is high in robustness and good in stabilizing and adjusting effects on aircraft attitude systems with nonlinearity, coupling disturbance and environmental disturbance.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Decoupling control method for relative orbits and attitudes of formation satellites

The invention discloses a decoupling control method for relative orbits and attitudes of formation satellites, relates to the technical field of the control of the orbits and attitudes of a spacecraft formation, and solves the problems of large satellite calculation amount and low orbit solving efficiency caused by high control dimension of the formation satellites due to serious coupling of the relative orbits and the attitudes of the formation satellites. The method gives two decoupling conditions at first, so that the control of the relative orbits and the attitudes can be designed independently; a thrust vector mobility decoupling constraint condition is introduced to the initialization control of the relative orbits according to satellite attitude mobility constraints indirectly; and during the optimal thrust vector attitude tracking, the possible orientation in space, which meets solar avoidance constraints, of a star sensor optical axis (1) is sought by using a geometric method, and the optimal attitude quaternion and attitude angular velocity are calculated finally by using a double-vector attitude determination algorithm. The method provides important reference value for the control of the orbits and the attitudes of the spacecraft formation.
Owner:HARBIN INST OF TECH

Method for controlling four-rotor aircraft system based on human-computer interaction technology

InactiveCN102219051AFlexible operationPrecise flight positioning operationImage analysisActuated automaticallyAttitude controlControl signal
A method for controlling a four-rotor aircraft system based on the human-computer interaction technology, which belongs to the intelligent flying robot field, is characterized in that a manipulator can control the four-rotor aircraft by gestures. The flight attitude control is accomplished by the cooperative running of the four rotors which are arranged at geometrical vertexes of the four-rotor aircraft with three degrees of freedom being yaw angle, pitch angle and roll angle. The human-computer interaction technology mainly utilizes OpenCV and OpenGL. The system captures depth images of the manipulator hands through a depth camera; the depth images are analyzed and processed by the computer to obtain gesture information and generate control signals corresponding to the gesture information; and then the control signals are sent through a radio communication device to the aircraft for execution, so as to accomplish the mapping from the motion state of the manipulator hands to the motion state of the aircraft and complete the gesture control. With the help of far controlling distance and more visual gesture corresponding relation, the gesture control can be applied to danger experiments and industrial production processes with high execution difficulty.
Owner:BEIJING UNIV OF TECH

Flexible satellite attitude orbit coupling control method based on isolation allowance method and pulse width fusion strategy

The invention relates to the field of flexible satellite attitude orbit coupling control, in particular to a flexible satellite attitude orbit coupling control method based on an isolation allowance method and a pulse width fusion strategy. The method solves the problems that in the satellite in-orbit attitude and orbit control process, a flywheel cannot control that the corresponding thruster layout is not given, the plume influence and rotational inertia level bias are not considered, isolation allowance is not considered and the attitude does not meet the requirement. The method comprises the steps of 1, obtaining sailboard locking and satellite uncontrollable dynamical model parameters; 2, determining installation position coordinates of a thrust; 3, determining an IM value; 4, obtaining an orbit-control LQG sequence; 5, determining the orbit-control pulse width and the air injection direction; 6, selecting air injection of the attitude-controlled thrust; 7, determining the range of the attitude-controlled thrust; 8, determining the attitude-controlled air injection time; 9, obtaining an equivalent force moment value. The flexible satellite attitude orbit coupling control method is applied to the field of flexible satellite attitude orbit coupling control.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products