Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1066 results about "Relative velocity" patented technology

The relative velocity (also or ) is the velocity of an object or observer B in the rest frame of another object or observer A.

Collision avoidance with active steering and braking

A method for collision avoidance using automated braking and steering comprising: determining an actual distance to an obstacle in a path of a vehicle; determining a relative velocity between the obstacle and the vehicle; determining a first distance sufficient to avoid collision by braking only; determining a second distance sufficient to avoid collision by combined braking and steering around the obstacle. The method also includes: applying braking if at least one of, the first distance exceeds the actual distance and the first distance is within a selected threshold of the actual distance. If the actual distance exceeds the second distance and a lane change is permitted, steering control to affect a lane change is applied.
Owner:BWI +1

Safety running system for vehicle

In a safety running system, a transverse travelling distance resulting when a subject vehicle travels to a current position of an oncoming vehicle is calculated based on the vehicle velocity and yaw rate of the subject vehicle, a relative transverse distance of the oncoming vehicle relative to a vehicle body axis of the subject vehicle is calculated based on a relative distance, relative velocity and relative angle between the subject vehicle and the oncoming vehicle detected by a radar information processor. When a relative transverse deviation obtained by subtracting the transverse travelling distance from the relative transverse distance resides within a range and that state continues to exist over a predetermined time period, it is judged that there is a collision possibility of the subject vehicle with the oncoming vehicle, and automatic steering is performed so as to avoid a collision.
Owner:HONDA MOTOR CO LTD

Collision warning system

A method of estimating a time to collision (TTC) of a vehicle with an object comprising: acquiring a plurality of images of the object; and determining a TTC from the images that is responsive to a relative velocity and relative acceleration between the vehicle and the object.
Owner:MOBILEYE VISION TECH LTD

A lean v2x security processing strategy using kinematics information of vehicles

A vehicle-to-vehicle communication filtering system is provided to selectively process broadcast messages between a host vehicle and a remote vehicle. A processing unit evaluates a time-to-collision status between the host vehicle and the remote vehicle sending the message. The time-to-collision status is a function of a relative distance and a relative velocity between the host vehicle and the remote vehicle which are determined from data provided within a first portion of the message received from the remote vehicle. An attentive factor is assigned to each of the remote vehicles based on the time-to-collision with respect to each remote vehicle. The attentive factor identifies a proportion of messages broadcast from the remote vehicle to be targeted for security processing. Security processing of the message is performed based on a second portion of the message unless the attentive factor indicates the message should be ignored.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for determining time in a satellite positioning system

A method and apparatus for determining a reference time associated with a satellite positioning system. In turn, the reference time, in one embodiment, may be used to determine other navigational information. Such navigational information may include, for example, the location / position of a satellite positioning system (SPS) receiver. In one embodiment, a relative velocity between an SPS receiver and a set of one or more satellites is used to determine an offset between time as indicated by the SPS receiver and the reference time. According to another embodiment of the invention, an error statistic is used to determine the reference time. According to yet another embodiment of the invention, two records, each representing at least a portion of a satellite message, are compared to determine time. In one implementation, the SPS receiver is mobile and operates in conjunction with a basestation to determine time and / or other navigational information according to one or a combination of the methods described.
Owner:SNAPTRACK

Apparatus for controlling a screen pointer with a frame rate based on velocity

An apparatus for controlling the position of a screen pointer for an electronic device having a display screen includes a light source for illuminating an imaging surface, thereby generating reflected images. An optical motion sensor generates digital images from the reflected images at a first frame rate. The motion sensor is configured to generate movement data based on the digital images. The movement data is indicative of relative motion between the imaging surface and the apparatus. The motion sensor is configured to modify the first frame rate to one of a plurality of alternate frame rates based on a current relative velocity between the imaging surface and the apparatus.
Owner:ELAN MICROELECTRONICS CORPORATION

Active brake control including estimation of yaw rate and slip angle

An improved vehicle active brake control based on an estimate of vehicle yaw rate and slip angle, wherein the estimate is based on a weighted average of two yaw rate values developed with two different estimation techniques. In general, the first estimate of yaw rate is based on the relative velocity of the un-driven wheels, and the second estimate is based on a measure of lateral acceleration. Confidence levels in each estimate are determined and used to form a third or preliminary yaw rate estimate based on a weighted average of the first and second estimates, and the third estimate is supplied to a closed-loop nonlinear dynamic observer which develops the final estimate of yaw rate, along with estimates of lateral velocity and side-slip angle.
Owner:GM GLOBAL TECH OPERATIONS LLC +1

Collision avoidance with active steering and braking

A method for collision avoidance using automated braking and steering comprising: determining an actual distance to an obstacle in a path of a vehicle; determining a relative velocity between the obstacle and the vehicle; determining a first distance sufficient to avoid collision by braking only; determining a second distance sufficient to avoid collision by combined braking and steering around the obstacle. The method also includes: applying braking if at least one of, the first distance exceeds the actual distance and the first distance is within a selected threshold of the actual distance. If the actual distance exceeds the second distance and a lane change is permitted, steering control to affect a lane change is applied.
Owner:BWI CO LTD SA +1

Control system for resilient support mechanism such as vehicle suspension mechanism

A control system for a resilient support mechanism such as a suspension mechanism of a wheeled vehicle including a damper disposed between an unsprung mass member and a sprung mass member of the vehicle, wherein a damping coefficient of the damper is divided into a linear portion and a nonlinear portion, and wherein the nonlinear portion of the damping coefficient is defined as a control input u and applied with a frequency weight Wu(s), while a vertical velocity of the sprung mass member, a relative velocity of the sprung mass member to the unsprung mass member and a vertical acceleration of the sprung mass member are defined as an evaluation output zp and applied with a frequency weight Ws(s). In the control system, a nonlinear Hinfin control theory is applied to a generalized plant to obtain a positive definite symmetric solution P and to calculate a target damping force based on the positive definite symmetric solution P and a state amount such as the vertical velocity of the sprung mass member, a relative displacement of the sprung mass member to the unsprung mass member or the like.
Owner:TOYOTA JIDOSHA KK

Unitized Ergonomic Two-Dimensional Fingerprint Motion Tracking Device and Method

A sensor which uses a plurality of partial fingerprint readers (imagers), and various computational algorithms, to detect changes in fingerprint images as a function of finger movement. The sensor can provide both finger motion information and fingerprint images. The sensor uses multiple partial fingerprint readers, arranged in different directions on a surface, to detect finger motion in two dimensions. The sensor can also detect the relative speed and direction of finger movement. Some sensor embodiments use deep finger penetrating radio frequency (RF) based circuits, which can be inexpensively printed or formed on the surface of robust and flexible dielectric materials such as Kapton tape. The sensor also has textured surfaces to help guide the user. The sensor both small and robust, and is well suited for control applications for low-cost mass market microprocessor controlled devices such as cell phones, MP3 players, laptop computers, and other devices.
Owner:SYNAPTICS INC

Vertical speed indicator/traffic resolution advisory display for TCAS

A display presents to the viewer the outputs of a dual mode Traffic Collision Avoidance System (TCAS) / Intra-Formation Position Collision Avoidance System (IFPCAS). IFPCAS requires the cooperation of a least two formation follower aircraft in conjunction with the formation lead aircraft. The display indicates the relative velocity of the other formation follower aircraft, with respect to the formation lead aircraft, in addition to other types of information.
Owner:HONEYWELL INC

Airborne Situational Awareness System

A digital airborne situational awareness system and method. The system is installed on multiple aircraft to generate an airborne network providing collision avoidance without ground control. A global positioning system (GPS) receiver unit is coupled to a microprocessor in each aircraft equipped with the system. A software engine receives the raw GPS data and determines location, speed, flight path direction, and altitude. The software engine conditions the GPS data for display on a cockpit display panel. The conditioned data orients the display with the heading, speed, and altitude data of the host system aircraft. A transceiver section provides data transmission to other airborne receiving units within the approximately forty mile range of the airborne network. The transceiver transmits data packets including reconditioned location (track), altitude, and an aircraft class identifier to other aircraft in the network. The transceiver receives data from other airborne vehicles equipped with the system within the network range. Once the computations of positional data for other aircraft are performed, the positional data is sent to the display processing section for appropriate cockpit display. The software engine develops a set of projections that are compared to the relative speed, flight path direction and altitude of the all other units in the airborne network. These projections determine the threat levels of converging flight paths with limits that provide warning data to the pilot of any pending flight path conflict situation.
Owner:DIMENSIONAL RES

Sensor system with radar sensor and vision sensor

A motor vehicle crash sensor system for activating an external safety system such as an airbag in response to the detection of an impending collision target. The system includes a radar sensor carried by the vehicle providing a radar output related to the range and relative velocity of the target. A vision sensor is carried by the vehicle which provides a vision output related to the bearing and bearing rate of the target. An electronic control module receives the radar output and the vision output for producing a deployment signal for the safety system.
Owner:AUTOLIV ASP INC

Landing gear method and apparatus for braking and maneuvering

Aircraft landing gear comprised of a wheel hub motor / generator disks stack, includes alternating rotor and stator disks mounted with respect to the wheel support and wheel. The wheel hub motor / generator can provide motive force to the wheel when electrical power is applied, which may be applied prior to touch-down thus decreasing the difference in relative velocities of the tire radial velocity with that of the relative velocity of the runway thus greatly reducing the sliding friction wear of said tire. After touchdown the wheel hub motor / generator may be used as a generator thus applying a regenerative braking force and / or a motorized braking action to the wheel. The energy generated upon landing maybe dissipated through a resistor and / or stored for later use in providing a source for motive power to the aircraft wheels for the purpose of taxiing and ground maneuvers of said aircraft.
Owner:DELOS AEROSPACE

System and method for enhanced vehicle control

A method and system may determine, in a vehicle, a desired path around an object based on a location of the object relative to the vehicle, relative speed, road parameters and one or more vehicle parameters. The method and system may calculate one or more vehicle control parameter values which minimize a predicted deviation from the desired vehicle path. The method and system may determine whether the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints. If the one or more vehicle control parameter values would cause the vehicle to exceed one or more vehicle stability constraints, the one or more vehicle control parameter values may be reduced to one or more vehicle control parameter values not causing the vehicle to exceed the one or more vehicle stability constraints. The method and system may output the one or more vehicle control parameter values to a vehicle automated control device.
Owner:GM GLOBAL TECH OPERATIONS LLC

Radar system and method for determining range, relative velocity and bearing of an object using continuous-wave and chirp signals

Determining distance and relative speed includes a transmitter transmitting electromagnetic signals defined by a plurality of sections, a first section comprising a continuous-wave (CW) signal, a second section comprising a chirp electromagnetic signal, the chirp electromagnetic signal comprising a plurality of subsections. A detector detects reflected signals being the transmitted electromagnetic signals reflected from an object, and comprising a reflected CW signal and a reflected chirp signal. The detector detects the reflected signals by: (i) generating a plurality of samples of the reflected CW signal, and (ii) generating a plurality of samples of the reflected chirp signal. A processor determines a first set of phase differences among the plurality of samples of the reflected CW signal and a second set of phase differences among the plurality of samples of the reflected chirp signal, and processes the first and second sets of phase differences to determine the distance, relative speed and bearing.
Owner:ARRIVER SOFTWARE LLC (N D GES D STAATES DELAWARE)

Method and apparatus for determining time in a satellite positioning system

A method and apparatus for determining a reference time associated with a satellite positioning system. In turn, the reference time, in one embodiment, may be used to determine other navigational information. Such navigational information may include, for example, the location / position of a satellite positioning system (SPS) receiver. In one embodiment, a relative velocity between an SPS receiver and a set of one or more satellites is used to determine an offset between time as indicated by the SPS receiver and the reference time. According to another embodiment of the invention, an error statistic is used to determine the reference time. According to yet another embodiment of the invention, two records, each representing at least a portion of a satellite message, are compared to determine time. In one implementation, the SPS receiver is mobile and operates in conjunction with a basestation to determine time and / or other navigational information according to one or a combination of the methods described.
Owner:SNAPTRACK

Methods to prevent wheel slip in an autonomous floor cleaner

Tread structures, wave motion navigational controls, and ramp up recovery controls are provided to an autonomous floor cleaner to reduce wheel slippage. The floor cleaner delivers liquid to the floor as part of the cleaning process. Wheels on the device are provided with relatively deep peripheral grooves to minimize the contact surfaces of a sprocket wheel and to accommodate the layer of liquid on the floor. In the event of wheel slippage, or to prevent wheel slippage, the device is designed to move forward with a slight side-to-side wave action caused by periodically altering the relative speeds of two drive wheels. There is also provided a slippage recovery mode where the drive wheels shut down or greatly slow when severe slippage is sensed, followed by a slow ramp up of speed.
Owner:SC JOHNSON & SON INC

Collision Warning System

A method of estimating a time to collision (TTC) of a vehicle with an object comprising: acquiring a plurality of images of the object; and determining a TTC from the images that is responsive to a relative velocity and relative acceleration between the vehicle and the object.
Owner:MOBILEYE VISION TECH LTD

Pre-alarm method for preventing rear-end collision by following car

The invention relates to an early warning method for preventing rear-end collision with a rearward vehicle and an early warning system thereof, wherein the method comprises the following steps: 1) arranging an early warning system for preventing rear-end collision with the rearward vehicle, which comprises an information acquisition unit, a system control unit comprising a singlechip as well as an early warning execution unit; wherein, an early warning module for preventing rear-end collision with the rearward vehicle is prearranged inside the singlechip, a collision warning range and a formula calculating the collision time of the vehicles are prearranged inside the early warning module for preventing rear-end collision with the rearward vehicle; 2) acquiring the distance between the rearward vehicle and own vehicle and relative speed information and acquiring own speed information; 3) calculating time of collision TTC and a warning time threshold of collision TTC_W of the rearward vehicle and own vehicle; 4) generating a control instruction in accordance with the difference value between the calculated time threshold of collision TTC and the warning time threshold of collision TTC_W of the rearward vehicle and own vehicle as well as the prearranged collision warning range; 5) sending corresponding warning information according to the control instruction. The invention can real-timely and accurately monitor the relative motion state between own vehicle and the rear vehicle that travels in the same traffic lane, thus effectually preventing the rear-end collision of the vehicles that traveling at high speed.
Owner:TSINGHUA UNIV

Collision warning system

A collision warning system (10) discriminates between objects which pose a threat of collision from those which do not by measuring the relative sightline rate of the object, this being a measure of the rate of change of angular position of the object if the sightline rate is above a threshold value, there is little risk of collision. To measure the sightline rate, a radar source (20) emits microwave frequency radiation which is received by two detectors (22 and 24) after reflection from a target. Signals from the detectors are processed by processing means (26). The processing means determines if the sightline rate of an object is below a certain threshold. If it is, and the relative velocities of the object and the system are such that a collision is likely, a warning buzzer (28) sounds.
Owner:QINETIQ LTD +1

Automobile lane changing early-warning method and lane changing early-warning system

The invention relates to an automobile lane changing early-warning method and a lane changing early-warning system. The method comprises the steps of (1) arranging the lane changing early-warning system which comprises an information collecting unit, a system control unit and an early-warning execution unit, wherein a critical safety distance computing module and an early-warning decision module are arranged in the system control unit, and a computing formula for critical safety distance which is right suitable for lane changing and an early-warning decision condition are contained; (2) collecting information of distance between the closest target automobiles in a primary lane where a user automobile is located and a lane-changing target lane in a given front-back range and the user automobile and relative speed information and speed information of the user automobile; (3) computing the critical safety distance suitable for lane changing and comparing actual distance and computed critical safety distance and generating an early-warning control instruction; and (4) sending corresponding alarming information according to the early-warning control instruction. By means of the automobile lane changing early-warning method and the lane changing early-warning system, surrounding driving environment of the user automobile can be detected comprehensively, lane-changing safety under different working conditions can be judged, and collision accidents in the lane changing process can be effectively prevented.
Owner:TSINGHUA UNIV

Millimeter-wave time-division linear frequency modulation multiple-target detection colliding-proof radar for car

The invention relates to the technical field of radio fix radars, in particular to a millimetre wave time-division linear frequency modulation multi-object detection automobile anti-collision radar. The radar of the invention adopts full phase parameter receiving / emitting benchmark signal and time-division and time-sequence asynchronous control to receive / emit a dual-purpose quasi-light integrated medium lens antenna array, and scans the objects possible to be collided on the warning road surfaces by DSP according to lane scanning wave beam; the road situation photographing combined with the vehicle speed and GPS data MCU to control time-division n-passage modulation frequency and waveform millimetre wave linear locking phase frequency modulation; emission is carried out sequentially by R / T2, a circulator, a wave beam switch and the antenna array; echo passes through the antenna array, the wave beam switch, the circulator, the R / T1, low noise high amplifier, subharmonic mixing, middle amplifier and a time-dividing circuit and multi-object signal corresponding matching filter wave and is processed and controlled by MCU at DSP; when a plurality of road barriers are encountered, the orientation, distance and relative speed are determined by DSP restriction virtual warning; three-dimensional images are displayed by a CRT; the closer the distance of the object is, the higher the resolution is; the object which is closest to the vehicle is recognised; sound and light alarm are carried out when the distance is less than safety distance; when the distance is near to the dangerous distance, the vehicle can intelligently avoid the barrier or reduce the speed or brake; the radar of the invention can make a choice according to the control reference road situation, the vehicle speed and the GPS data, thus obviously improving the driving safety of the vehicle.
Owner:阮树成

Blind-spot detection system for vehicle

Disclosed is a BSD system for vehicle provided with a blind spot detection module which includes obstacle in blind spot detection means for detecting an obstacle existing in a blind spot around the rear side of a self vehicle and an obstacle indicator disposed on a side mirror of the self vehicle and adapted to display at least one of information for the existence of an obstacle in the blind spot, for a distance between the obstacle and the self vehicle, and for a relative speed of the obstacle to the self vehicle, the blind-spot detection system for vehicle. This system is provided with means for detecting that the blind spot detection module is in an abnormal operation state and means disposed on the side mirror having the obstacle indicator and adapted to visually indicate an abnormality of the blind spot detection module detected by the abnormality detection means.
Owner:MAZDA MOTOR CORP

Landing gear method and apparatus for braking and maneuvering

Aircraft landing gear comprised of a wheel hub motor / generator disks stack, includes alternating rotor and stator disks mounted with respect to the wheel support and wheel. The invention can provide motive force to the wheel when electrical power is applied, e.g. prior to touch-down, thus decreasing the difference in relative velocities of the tire radial velocity with that of the relative velocity of the runway and reducing the sliding friction wear of the tire. After touchdown the wheel hub motor / generator may be used as a generator thus applying a regenerative braking force and / or a motorized braking action to the wheel. The energy generated upon landing maybe dissipated through a resistor and / or stored for later use in providing a source for motive power to the aircraft wheels for taxiing and ground maneuvers of the aircraft. Methods and apparatuses for nose gear steering and ABS braking using the disclosed invention are described.
Owner:DELOS AEROSPACE

Rear-end collision pre-warning method based on driver types

InactiveCN103531042AAvoid the impact of rear-end warningImprove detection accuracyDetection of traffic movementAnti-collision systemsRear-end collisionReaction time test
The invention discloses a rear-end collision pre-warning method based on driver types, and aims to solve the problem that the pre-warning accuracy is reduced due to no consideration of driving habits of different types of drivers in the prior art. The rear-end collision pre-warning method comprises the steps as follows: 1, an emergency reaction ability test: reaction time of a tested driver is tested by a reaction time tester; 2, driving behavior monitoring: corresponding sensors are respectively utilized to acquire operation parameters of the tested driver, a distance between the tested vehicle and a vehicle ahead and a relative speed; 3, classification of driver types: according to emergency reaction ability test data and driving behavior monitoring data of the tested driver, an unsupervised cluster analysis method is adopted to determine the driver type on the basis of a preset reaction capacity classification rule and a driving style membership grade function; 4, real-time danger level detection: a danger level judgment equation suitable for the driver type of the tested driver is selected to judge current driving danger level of the tested vehicle; and 5, pre-warning triggering.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products