Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1674 results about "Airbag deployment" patented technology

An airbag is a type of vehicle safety device and is an occupant restraint system. The airbag module is designed to inflate extremely rapidly then quickly deflate during a collision or impact with a surface or a rapid sudden deceleration.

Tracking and gesture recognition system particularly suited to vehicular control applications

A system and method tracks the movements of a driver or passenger in a vehicle (ground, water, air, or other) and controls devices in accordance with position, motion, and/or body or hand gestures or movements. According to one embodiment, an operator or passenger uses the invention to control comfort or entertainment features such the heater, air conditioner, lights, mirror positions or the radio/CD player using hand gestures. An alternative embodiment facilitates the automatic adjustment of car seating restraints based on head position. Yet another embodiment is used to determine when to fire an airbag (and at what velocity or orientation) based on the position of a person in a vehicle seat. The invention may also be used to control systems outside of the vehicle. The on-board sensor system would be used to track the driver or passenger, but when the algorithms produce a command for a desired response, that response (or just position and gesture information) could be transmitted via various methods (wireless, light, whatever) to other systems outside the vehicle to control devices located outside the vehicle. For example, this would allow a person to use gestures inside the car to interact with a kiosk located outside of the car.

Integral PSIR door for an instrument panel and method for making same

An air bag cover assembly comprises a flexible plastic air bag door closing an air bag deployment opening in a hard plastic retainer. A door outer edge abuts and is mechanically locked to an inner edge of the opening. The interlock comprises a protrusion in the door outer edge, which mates with a complementary recess in the inner edge of the opening. The interlock blocks outward and inward air bag door movement. The door and retainer are made of plastics, which generally do not adhere easily to one another. Silicone may be sprayed on the door outer edge to further reduce adhesion or where plastics, which generally adhere to one another, are used. Preferably, the exterior and interior surfaces of the door and retainer lie flush with one another. The door includes a flexible hinge flange that extends from an interior door surface and attaches the door to the vehicle structure. The hinge flange allows the door to swing outward upon air bag deployment while retaining the door to the vehicle structure. A steel door insert may be included to add rigidity, strength or dimensional stability to the door. The assembly is constructed by molding molten retainer material in a mold cavity that contains the door so that the retainer material flows around the door to form the mechanical interlock.

Method and apparatus for determining the location of an occupant of a vehicle

A method and apparatus for use in locating the eyes of a vehicle driver or passenger in a vehicle for controlling vehicle systems including the positioning of vehicle sideview mirrors in relation to the driver's eyes to maximize the view of traffic on either side of the vehicle or the characteristics of vehicle airbag deployment. The location of a driver's or passenger's eyes is derived from the adjustment by the driver (or passenger, if capable of doing so) of adjustable light beam(s) emanating from light source(s) or illuminated indicia, until it (or they) intersect the driver's or passenger's eyes. From the angles of adjustment of the light beam(s) and other known coordinates of the vehicle, the location of the driver's or passenger's eyes or the target may be computationally derived as a set of Cartesian coordinates. The determined eye location of the driver may be used together with the known mounting locations of the driver's and passenger's sideview mirror assemblies to derive exterior sideview mirror pitch and azimuth adjustment signal sets correlated to the vehicle blind spots. The adjustment signals are applied to servo motors operating in a feedback control loop to correct the actual driver's side and passenger's side sideview mirror pitch and azimuth settings to properly reflect images of the driver's side and passenger'side vehicle blind spots to the driver's eyes. The determined eye locations of the driver and passenger may be also or alternatively employed in the control of the airbag deployment system and in other vehicle safety and comfort systems. The relative fore-aft distance away from the airbag and the height of the person or target can be computed, and airbag deployment force and/or duration adjusted to compensate for deviation from the standard height and fore-aft distance.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products