Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1722results about "Pressure gas generation" patented technology

Air bag inflator with heat sink and retainer

An inflator (10) for inflating an inflatable vehicle occupant protection device includes a housing (20) defining a generally ring-shaped propellant chamber (200) extending around an axis (50) of the inflator. The housing (20) has a fluid outlet (52) for directing flow of inflation fluid out of the housing to the inflatable device. A quantity of ignitable propellant (240) is located in the propellant chamber for, when ignited, producing inflation fluid for inflating the inflatable device. The housing (20) has a fluid passage (90) between the propellant chamber (200) and the fluid outlet (52). The fluid passage (90), which is normally closed, opens upon actuation of the inflator (10) to enable fluid flow from the propellant chamber (200) to the fluid outlet (52). The fluid passage (90), when open, has a variable flow area depending upon the pressure in the housing (20). A heat sink (270) is located in the propellant chamber (200) between the ignitable propellant (240) and the fluid passage (90) for cooling and filtering inflation fluid flowing from the propellant chamber through the fluid passage. The inflator (10) includes a retainer (280) in the propellant chamber (200) between the ignitable propellant (240) and the fluid passage (90) for retaining the heat sink (270) in the propellant chamber upon actuation of the inflator.
Owner:TRW INC

Gas generating system

A gas generating system (10) including a baffle system (42) for modifying the temperature and pressure of a gas generated by the system, and to remove particulates from the gas. The gas generating system includes a first combustion chamber (34a), a second combustion chamber (36a), and the baffle system (42) adjacent both the first and second combustion chambers so as to enable fluid communication with the combustion chambers upon activation of the gas generating system. In another aspect of the present invention, a baffle system (42) is provided including a first end plate (44) having an opening (44b) formed therein for enabling fluid communication with a first fluid source (34a), a second end plate (46) having an opening (46b) formed therein for enabling fluid communication with a second fluid source (36a), and a sequence of baffle elements (48) extending between the first and second end plates. A first baffle element (48a) of the sequence of baffle elements defines a chamber (60) for receiving therein a fluid through the openings in the first and second end plates. Each additional baffle element in the sequence of baffle elements is spaced outwardly apart from a preceding baffle element in the sequence of baffle elements. In another aspect of the invention, a method is provided for producing, in a gas generating system, a gas having a pressure within a predetermined pressure range and a temperature within a predetermined temperature range. In another aspect of the present invention, a vehicle occupant protection system is provided.
Owner:JOYSON SAFETY SYST ACQUISITION LLC

Inflator

An inflator (10) for a vehicle occupant restraint system. The inflator (10) includes a housing (12) having apertures (13) formed therealong to enable fluid communication between an interior of the housing (12) and an exterior of the housing. A first baffle (14) is positioned in the housing interior. The baffle (14) is spaced apart from the housing (12) to define a fluid channel (33) therebetween in communication with the housing apertures (13). The baffle (14) includes a first opening (17) for fluid communication between an interior of the baffle (14) and the fluid channel (33), and an open end portion for fluid communication between the baffle interior and the baffle exterior. A spacer (18) positioned in the housing interior cavity defines an enclosure (18c) and includes an aperture (19) formed therein for fluid communication between the enclosure (18c) and the open end portion of the baffle. A gas generant (30) is positioned within the spacer enclosure (18c). The gas generant (30) may be a smokeless gas generant composition. An initiator (20) is coupled to the housing (12) for initiating combustion of the gas generant (30) upon activation of the inflator. The inflator (10) provides a continuous, tortuous fluid path through the fluid channel (33) for cooling inflation gases. In addition, the use of a smokeless gas generant composition allows the inflator (10) to operate without the need for a filter to remove particulate materials from the inflation gas.
Owner:AUTOMOTIVE SYST LAB

Gas generating system

A gas generator (10) includes an igniter (27) and first and second inflation gas generant compositions (52, 52′) positioned to enable fluid communication with the igniter (27) upon activation of the igniter. Flow regulators (54, 54′) are provided to regulate a flow of combustion products from the igniter (27) to the first and second inflation gas generant compositions (52, 52′), to correspondingly regulate a time period between activation of the igniter (27) and initiation of combustion of the first and second inflation gas generant compositions (52, 52′). In another aspect, the gas generator (10) includes a modular baffle system (70) including a first baffle chamber (71) in fluid communication with an inflation gas generant combustion chamber (50) for receiving therein combustion products from combustion of an inflation gas generant (52) positioned in the combustion chamber. An outer baffle chamber (74) is also positioned radially outwardly from the first baffle chamber (71) for receiving therein combustion products from the first baffle chamber. In yet another aspect, the gas generator includes a first enclosure (12), a second enclosure (24), and a projection (44) formed on one of the first enclosure and the second enclosure. An aperture (46) is formed in the other one of the first enclosure (12) and the second enclosure (24) for receiving the projection (44) therein. At least a portion of the projection (44) is fixed within the aperture (46) to prevent withdrawal of the projection (44) from the aperture (46), thereby securing together the first enclosure (12) and the second enclosure (24).
Owner:AUTOMOTIVE SYST LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products