Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2570 results about "Hydrazine compound" patented technology

Hydrazine, also known as diazine, is a chemical compound. It is composed of nitrogen and hydrogen ions. Its chemical formula is N2H4. It contains hydrogen in its +1 and nitrogen in its -2 oxidation state.

Methods of chemically derivatizing single-wall carbon nanotubes

This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.
Owner:RICE UNIV

Chemically modifying single wall carbon nanotubes to facilitate dispersal in solvents

This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.
Owner:RICE UNIV

Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds

The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-oxygen bond between the oxygen atom of an alcohol and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. The present invention also relates to copper-catalyzed methods of forming a carbon-carbon bond between a reactant comprising a nucleophilic carbon atom, e.g., an enolate or malonate anion, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. Importantly, all the methods of the present invention are relatively inexpensive to practice due to the low cost of the copper comprised by the catalysts.
Owner:MASSACHUSETTS INST OF TECH

Method for preparing nano-Pd or Pd platinum alloy electrocatalyst for fuel cell

The invention relates to a preparation method of a nanometer Pd or the Pd platinum gold electrocatalysis catalyzer which is used in a kind of fuel cell, whose characteristic lies in that dissolve the mixture of the ration Pd salt or the Pd salt and the platinum salt (in which the Pd atomic ratio accounts for metal quantity 10-100%) in the water, after joining the right amount complexing agent solution, elevates temperature to 0-80deg.C and keeps the temperature 5 minutes to 8 hours, then cooling to the room temperature, adjusts the pH value to 5 to 12 and adds the carbon carrier, then adds the solution of hydroboration sodium, hydrazine or formic acid and so on reducing agent under the 0 to 80deg.C , and maintains 10 minutes to 10 hours, then filtrating, laundering, dry, finally in inert atmosphere or reducing atmosphere through 100 to 300deg.C heat treatment in 0.5 to 10h, namely carries the carbon Pd or the Pd platinum electrocatalysis. The particle size of catalyst is controllable, adjustable, the composition is controllable, regards the heat treatment temperature to be different, the particle size which obtains is relatively 1.8nm to 20nm above, and the granule distribution is narrow, is suitable to serve as the direct formic acid fuel cell anode catalyst as well as the direct methanol fuel cell anti-methyl alcohol negative pole catalyst.
Owner:上海新微科技集团有限公司 +1

Method for recycling and preparing superfine nickel powder from nickel-hydrogen cell

The invention discloses a method for directly reclaiming and preparing superfine nickel powder in positive material of nickel-hydrogen batteries. The method is characterized in that firstly, a professional disassembling machine is adopted to disassemble waste nickel-hydrogen batteries to obtain positive waste material which is crushed; secondly, lixiviating is performed by adopting a sulphuric acid and oxyful system; iron is removed and then impurities are extracted using P204 from lixivium to cause impurities such as calcium, copper, manganese, zincum and the like to transfer to an organic phase and cause nickel and cobalt to be left in a water phase; thirdly, solution containing nickel and cobalt is separated and extracted by using P507 so cause the cobalt to transfer to the organic phase the nickel to be left in the water phase; at last, faffinate containing nickel is deoxidized using hydrazine hydrate to obtain the superfine nickel powder. Through the application of the method, the coefficient of recovery of nickel in the positive waste material can reach more than 98.5 percent, and the purity of the obtained nickel reaches more than 99.7 percent; and the superfine nickel powder with the average grain diameter of 400 nm and face centered cubic crystal type sphericity is obtained by applying the method.
Owner:GUANGDONG BRUNP RECYCLING TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products