Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

625 results about "Slip angle" patented technology

In vehicle dynamics, slip angle or sideslip angle is the angle between the direction in which a wheel is pointing and the direction in which it is actually traveling (i.e., the angle between the forward velocity vector vₓ and the vector sum of wheel forward velocity vₓ and lateral velocity vy, as defined in the image to the right). This slip angle results in a force, the cornering force, which is in the plane of the contact patch and perpendicular to the intersection of the contact patch and the midplane of the wheel.

Light stream based vehicle motion state estimating method

The invention discloses a light stream based vehicle motion state estimating method which is applicable to estimating motion of vehicles running of flat bituminous pavement at low speed in the road traffic environment. The light stream based vehicle motion state estimating method includes mounting a high-precision overlook monocular video camera at the center of a rear axle of a vehicle, and acquiring video camera parameters by means of calibration algorithm; preprocessing acquired image sequence by histogram equalization so as to highlight angular point characteristics of the bituminous pavement, and reducing adverse affection caused by pavement conditions and light variation; detecting the angular point characteristics of the pavement in real time by adopting efficient Harris angular point detection algorithm; performing angular point matching tracking of a front frame and a rear frame according to the Lucas-Kanade light stream algorithm, further optimizing matched angular points by RANSAC (random sample consensus) algorithm and acquiring more accurate light stream information; and finally, restructuring real-time motion parameters of the vehicle such as longitudinal velocity, transverse velocity and side slip angle under a vehicle carrier coordinate system, and accordingly, realizing high-precision vehicle ground motion state estimation.
Owner:SOUTHEAST UNIV

Torque distribution control method for electric-wheel automobile hub motor torque distribution system

The invention discloses a torque distribution control method for an electric-wheel automobile hub motor torque distribution system, and belongs to the field of an electric-wheel automobile. The electric-wheel automobile hub motor torque distribution system comprises parts as follows: a driver intention module, a hub motor, a stability controller, a torque distributor, a slip rate controller, a whole automobile module, a pavement information module and a whole automobile sensor module, wherein the stability controller comprises a fine adjustment mode and a stable adjustment mode, and the torque distributor divides whole automobile movement into a dynamic mode, an economical mode and a stable mode. According to the torque distribution control method, a plurality of controlled variables such as the slip rate, attachment coefficient, yaw velocity, side slip angle, hub motor rotating speed and the like are combined to control the automobile, so that stability and dynamic performance of the automobile at the low speed or high speed are guaranteed; and the automobile torque is distributed, so that automobile drive capacity, motor utilization efficiency and whole automobile stability when the automobile is driven normally or has a slipping phenomenon are improved.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Electric motor car differential steeling control method based on slip rate control

The invention provides an electric motor car differential steeling control method based on slip rate control. The method comprises the following steps of: (1) measuring the back wheel speed of the electric motor car, the actual output torque of a drive motor and the side speed of the car according to a wheel sped sensor; and (2) calculating the side speed and the heading angle peed of the electric motor car according to two freedom steering models, and then calculating the slip angles of four wheels, thereby calculating the rotational speed of the four wheels; and using a special arithmetic to realize the control on the electric differential steeling of a hub electric motor car. The electric motor car differential steeling control method based on slip rate control combines the calculation of torque distribution with the slip rate of the wheels to lead a designed electric differential steeling mechanism to have the effect of differential lock simultaneously when having the differential and also have the functions of reducing the speed and increasing the torque, thus greatly improving the running trafficability characteristic and the steering performance of the electric motor car, not only achieving the effect of a mechanical differential mechanism on the aspect of function, but also improving the transmission efficiency and reducing the complexity of a mechanical system.
Owner:CHONGQING UNIV

Three-dimensional model attitude angle video measuring system for wind tunnel model test

The invention relates to a three-dimensional model attitude angle video measuring system for a wind tunnel model test, in particular to a three-dimensional model attitude angle video measuring system for wind tunnel model three freedom degrees. For increasing the precision of wind tunnel model angle real-time measurement, the three-dimensional model attitude angle video measuring system overcomes the common problems of systems that the prior device has single-angle measuring ability, can not measure a side slip angle of a model, has no real-time performance, and needs postprocessing and the like. The three-dimensional model attitude angle video measuring system is composed of digital cameras, a zoom lens, a zoom lens controller, a driving lightening marking point, a high-speed computer and collection controlling and measuring software, wherein the driving lightening marking point (4) is arranged on the model, the two digital cameras (6) are used for recording, collecting and measuring in real time, the zoom lens controller (2) is connected with the high-speed computer (3) and is used for controlling the zoom lens (1), collecting images and transmitting the images to the high-speed computer (3), and the image data is processed by the collection controlling and measuring software (5) to measure and process the device in real time so as to obtain the real three-dimensional attitude angle of the model.
Owner:中国航空工业空气动力研究院

Method for controlling electric automobile stability direct yawing moment based on high-order slip mold

The invention provides a method for controlling the electric automobile stability direct yawing moment based on a high-order slip mold and relates to the field of control over electric automobile stability. The method includes the steps that the rotation angle of a steering wheel and the longitudinal automobile speed are detected through a signal acquisition and conditioning circuit, so that the ideal yawing angular speed value is obtained; according to the detected yawing accelerated speed at the current moment of an automobile and the actual yawing angular speed, the side slip angle estimated value is obtained through a robust slip mold observer based on active control and self-adaptive estimation; two parameters of the difference of the yawing angular speed and the ideal yawing angular speed and the actual slide slip angle of the automobile serve as input variables, a high-order slip mold control strategy is adopted, and the direct yawing moment meeting the requirement for automobile stability is obtained; and finally, the automobile stability margin serves as an objective function and a constraint condition, and a support vector machine algorithm is used for distributing drive force or brake force. By the adoption of the method, the finite time constriction of an automobile stability direct yawing moment control system is achieved, and the travel stability of the automobile under the limit conditions of the high speed, the severe road and the like is improved.
Owner:BAISHAN POWER SUPPLY COMPANY OF STATE GRID JILIN ELECTRONICS POWER COMPANY

Multi-intelligent agent based unmanned electric car automatic overtaking system and method

ActiveCN106671982ARealize dynamic coordinationImplement executive controlExternal condition input parametersFuzzy sliding mode controlSimulation
The invention relates to a multi-intelligent agent based unmanned electric car automatic overtaking system and method. The automatic overtaking system includes a vehicle-mounted sensor for acquiring front traffic information of an unmanned electric car. The automatic overtaking method includes: establishing a minimize safe distance model on the basis of feature information of a car and a surround environment thereof extracted by a vehicle-mounted sensing system and a V2X communication system; setting a sine function form as a base function of an automatic overtaking desired path, and dynamically planning an automatic overtaking desired track of the unmanned electric car in real time; adopting a self-adaption fuzzy slide mode control technique to solve the desired speed and the desired yaw velocity of overtaking of the unmanned electric car on the basis of a deviation between the desired overtaking path and an actual path; adopting a multi-intelligent agent genetic optimization algorithm to calculate out the required longitudinal and horizontal force of each wheel of the unmanned electric car; and establishing a mapping model from the longitudinal and horizontal forces of the wheels of the unmanned electric car to the desired slip angle and slip rate, and achieving execution control of the longitudinal and horizontal force of tires the unmanned electric car.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products