Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2110 results about "State space" patented technology

In the theory of discrete dynamical systems, a state space is the set of all possible configurations of a system. For example, a system in queueing theory defining the number of customers in a line would have state space {0, 1, 2, 3, ...}. State spaces can be either infinite or finite. An example of a finite state space is that of the toy problem Vacuum World, in which there are a limited set of configurations that the vacuum and dirt can be in.

System and methodology and adaptive, linear model predictive control based on rigorous, nonlinear process model

A methodology for process modeling and control and the software system implementation of this methodology, which includes a rigorous, nonlinear process simulation model, the generation of appropriate linear models derived from the rigorous model, and an adaptive, linear model predictive controller (MPC) that utilizes the derived linear models. A state space, multivariable, model predictive controller (MPC) is the preferred choice for the MPC since the nonlinear simulation model is analytically translated into a set of linear state equations and thus simplifies the translation of the linearized simulation equations to the modeling format required by the controller. Various other MPC modeling forms such as transfer functions, impulse response coefficients, and step response coefficients may also be used. The methodology is very general in that any model predictive controller using one of the above modeling forms can be used as the controller. The methodology also includes various modules that improve reliability and performance. For example, there is a data pretreatment module used to pre-process the plant measurements for gross error detection. A data reconciliation and parameter estimation module is then used to correct for instrumentation errors and to adjust model parameters based on current operating conditions. The full-order state space model can be reduced by the order reduction module to obtain fewer states for the controller model. Automated MPC tuning is also provided to improve control performance.
Owner:ABB AUTOMATION INC

Traffic signal self-adaptive control method based on deep reinforcement learning

InactiveCN106910351ARealize precise perceptionSolve the problem of inaccurate perception of traffic statusControlling traffic signalsNeural architecturesTraffic signalReturn function
The invention relates to the technical field of traffic control and artificial intelligence and provides a traffic signal self-adaptive control method based on deep reinforcement learning. The method includes the following steps that 1, a traffic signal control agent, a state space S, a motion space A and a return function r are defined; 2, a deep neutral network is pre-trained; 3, the neutral network is trained through a deep reinforcement learning method; 4, traffic signal control is carried out according to the trained deep neutral network. By preprocessing traffic data acquired by magnetic induction, video, an RFID, vehicle internet and the like, low-layer expression of the traffic state containing vehicle position information is obtained; then the traffic state is perceived through a multilayer perceptron of deep learning, and high-layer abstract features of the current traffic state are obtained; on the basis, a proper timing plan is selected according to the high-layer abstract features of the current traffic state through the decision making capacity of reinforcement learning, self-adaptive control of traffic signals is achieved, the vehicle travel time is shortened accordingly, and safe, smooth, orderly and efficient operation of traffic is guaranteed.
Owner:DALIAN UNIV OF TECH

System and method of collision avoidance using intelligent navigation

A system and method of intelligent navigation with collision avoidance for a vehicle is provided. The system includes a global positioning system and a vehicle navigation means in communication with the global positioning system. The system also includes a centrally located processor in communication with the navigation means, and an information database associated with the controller, for identifying a location of a first vehicle and a second vehicle. The system further includes an alert means for transmitting an alert message to the vehicle operator regarding a collision with a second vehicle. The method includes the steps of determining a geographic location of a first vehicle and a second vehicle within an environment using the global positioning system on the first vehicle and the global positioning system on the second vehicle, and modeling a collision avoidance domain of the environment of the first vehicle as a discrete state space Markov Decision Process. The methodology scales down the model of the collision avoidance domain, and determines an optimal value function and control policy that solves the scaled down collision avoidance domain. The methodology extracts a basis function from the optimal value function, scales up the extracted basis function to represent the unscaled domain, and determines an approximate solution to the control policy by solving the rescaled domain using the scaled up basis function. The methodology further uses the solution to determine if the second vehicle may collide with the first vehicle and transmits a message to the user notification device.
Owner:TOYOTA MOTOR CO LTD

Cloud computing system reliability modeling method considering common cause fault

The invention discloses a cloud computing system reliability modeling method considering a common cause fault, and belongs to the technical field of network reliability. The method comprises the steps of determining a state combination of a similar single server of a cloud computing system and performing simplification; calculating an existence probability of the simplified state combination of the similar single server by adopting a fault tree method; determining state combinations of similar servers of the cloud computing system, performing simplification, and calculating an existence probability of each state combination; enumerating state combinations of different servers of the cloud computing system, and calculating an existence probability of each state combination; and according to the state space of the cloud computing system, calculating the system reliability according to a given demand. According to the method, a common cause fault of all virtual machines running in the servers, caused by server faults, is considered, the state space modeling is adopted, and the state space is simplified, so that the problem of state space explosion during system scale increment is solved and the modeling efficiency is improved.
Owner:BEIHANG UNIV

Heterogeneous multi-agent collaborative decision-making method based on depth deterministic policy gradient

InactiveCN108600379AAchieve collaborative decision-makingData switching networksState spaceComputer science
The invention relates to a heterogeneous multi-agent collaborative decision-making method based on a depth deterministic policy gradient, belonging to the collaborative decision-making field of a heterogeneous intelligent unmanned system, comprising the following steps of: firstly, defining heterogeneous multi-agent characteristic attributes and reward and punishment rules, defining multi-agent state space and action space, and constructing multi-agent motion environment for collaboratively making decision; then, establishing an actor module for decision-making action and a critic module for evaluating feedback based on the depth-deterministic strategy gradient algorithm, and training the parameters of the learning model; using the trained model to obtain the multi-agent state sequence; and evaluating the situation of the multi-agent motion state sequence according to the reward and punishment rules set in the environment. The invention may construct reasonable sports environment according to actual needs, achieve the purpose of intelligent sensing and strategy optimization through the synergy between multiple agents in the system, and has a positive effect on the development of the unmanned system field in China.
Owner:INST OF SOFTWARE - CHINESE ACAD OF SCI

Heterogeneous cloud wireless access network resource allocation method based on deep reinforcement learning

The invention relates to a heterogeneous cloud wireless access network resource allocation method based on deep reinforcement learning, and belongs to the technical field of mobile communication. Themethod comprises the following steps: 1) taking queue stability as a constraint, combining congestion control, user association, subcarrier allocation and power allocation, and establishing a random optimization model for maximizing the total throughput of the network; 2) considering the complexity of the scheduling problem, the state space and the action space of the system are high-dimensional,and the DRL algorithm uses a neural network as a nonlinear approximation function to efficiently solve the problem of dimensionality disasters; and 3) aiming at the complexity and the dynamic variability of the wireless network environment, introducing a transfer learning algorithm, and utilizing the small sample learning characteristics of transfer learning to enable the DRL algorithm to obtain an optimal resource allocation strategy under the condition of a small number of samples. According to the method, the total throughput of the whole network can be maximized, and meanwhile, the requirement of service queue stability is met. And the method has a very high application value in a mobile communication system.
Owner:CHONGQING UNIV OF POSTS & TELECOMM

NEXT-GENERATION BANDWIDTH MANAGEMENT CONTROL SYSTEMS FOR MULTIPLE-SERVICE CALLS, SESSIONS, PACKET-LEVEL PROCESSES, AND QoS PARAMETERS - PART 1: STRUCTURAL AND FUNCTIONAL ARCHITECTURES

System and method for addressing immense, long-standing problem of bandwidth management, for example, in enterprise networks, VPNs, real-time and stored video services, mobile applications, wireless networks, and cloud computing applications. Described features include an automatic closed-loop control system infrastructure encompassing multiple time-scales and performing control actions optimized to the extent possible with respect to administrator-provided performance metrics. One aspect utilizes available or innovatively accessible means of session and QoS control (settings in configuration files, gateway APIs, QoS parameters, application bit-rate settings, etc.) within the context of practical multiple-vendor products in evolving multiple-service networks. Another aspect utilizes available or innovatively accessible means of session and QoS observations (values in reporting log files, gateway APIs, network monitoring, etc.) within the context of practical multiple-vendor products in evolving multiple-service networks. Traffic-measurement controlled adaptive reservations for distributed myopic single-service gatekeepers effectively shapes the permitted state-space boundary over a range of arbitrary curvatures.
Owner:AVISTAR COMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products