Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1230 results about "Multi segment" patented technology

Definition: Multi-Segment Marketing. Instead of focusing on a target market as is the usual trend of companies to better position their product, multi-segment marketing aims at the market as a whole and attempts to maximize the reach in order to generate as many sales as possible.

Thin illumination system

The present invention introduces a new class of thin doubly collimating light distributing engines for use in a variety of general lighting applications, especially those benefiting from thinness. Output illumination from these slim-profile illumination systems whether square, rectangular or circular in physical aperture shape is directional, square, rectangular or circular in beam cross-section, and spatially uniform and sharply cutoff outside the system's adjustable far-field angular cone. Field coverage extends from +/−5- to +/−60-degrees and more in each meridian, including all asymmetric combinations in between, both by internal design, by addition of angle spreading film sheets, and angular tilts. Engine brightness is held to safe levels by expanding the size of the engine's output-aperture without sacrifice in the directionality of illumination. One form of the present invention has a single input light emitter, a square output aperture and the capacity to supply hundreds of lumens per engine. A second multi-segment form of the invention deploys one light emitter in each engine segment, so that total output lumens is determined by the number of segments. Both types of thin light distributing engines provide input light collimated in one meridian and a light distributing element that maintains input collimation while collimating output light in the un-collimated orthogonal meridian, in such a manner that the system's far-field output light is collimated in both its orthogonal output meridians. The present invention also includes especially structured optical films that process the engine's doubly collimated output illumination so as to increase its angular extent one or both output meridians without changing beam shape or uniformity.
Owner:SNAPTRACK +1

Thin illumination system

The present invention introduces a new class of thin doubly collimating light distributing engines for use in a variety of general lighting applications, especially those benefiting from thinness. Output illumination from these slim-profile illumination systems whether square, rectangular or circular in physical aperture shape is directional, square, rectangular or circular in beam cross-section, and spatially uniform and sharply cutoff outside the system's adjustable far-field angular cone. Field coverage extends from + / −5- to + / −60-degrees and more in each meridian, including all asymmetric combinations in between, both by internal design, by addition of angle spreading film sheets, and angular tilts. Engine brightness is held to safe levels by expanding the size of the engine's output-aperture without sacrifice in the directionality of illumination. One form of the present invention has a single input light emitter, a square output aperture and the capacity to supply hundreds of lumens per engine. A second multi-segment form of the invention deploys one light emitter in each engine segment, so that total output lumens is determined by the number of segments. Both types of thin light distributing engines provide input light collimated in one meridian and a light distributing element that maintains input collimation while collimating output light in the un-collimated orthogonal meridian, in such a manner that the system's far-field output light is collimated in both its orthogonal output meridians. The present invention also includes especially structured optical films that process the engine's doubly collimated output illumination so as to increase its angular extent one or both output meridians without changing beam shape or uniformity.
Owner:SNAPTRACK +1

Method and apparatus for compiling groups of filter segments when producing multi-segment filter asemblies

A method of making segmented filters including moving substantially identical segments of one type at uniform rate to a transferring element, which places each segment separately on an exit path. Setting of the filter segments in a repeating group on the exit path is accomplished by delay in collecting segments by a transferring element in each module of the apparatus. Uniform positioning is effected using the transferring element which includes uniformly spaced drivers, and non-uniform positioning is effected using the transferring element with non-uniformly spaced drivers. The apparatus includes a guiding element positioned adjacent to a cutting drum and has a wall closing a channel for a set of segments drawn out of a flute on the drum. The filter set is led through the channel with the aid of a dog of a chain and is advanced by a worm surface of a pushing together drum. A separator positioned at the end of the channel which separates single filter segments and may be a disc cam pushing out the segment onto the transferring element between two neighbouring drivers into a chamber created by a supporting element. A stream of compressed air from nozzle directed towards the area between a shoe guide and separator helps separate and stabilize the filter segment.
Owner:PHILIP MORRIS USA INC

Method for fabricating solid oxide fuel cell module

There is provided a method of manufacturing a solid oxide fuel cell module comprising a plurality of cells each made up of a fuel electrode, an electrolyte, and an air electrode sequentially formed on a surface of a substrate with an internal fuel flow part provided therein, at least a face of the substrate, in contact with the cells, and interconnectors, being an insulator, and the cells adjacent to each other, being electrically connected in series through the intermediary of the respective interconnectors, said method of manufacturing the solid oxide fuel cell module comprising the steps of co-sintering the respective fuel electrodes, and the respective electrolytes, subsequently forming a dense interconnector out of a dense interconnector material, or an interconnector material turning dense by sintering in at least parts of the solid oxide fuel cell module, in contact with the respective fuel electrodes, and the respective electrolyte, and forming an air electrode on the respective electrolytes before electrically connecting the air electrode with the respective dense interconnectors. With the invention, it is possible to solve various problems of sinterability, encountered in the process of manufacturing the solid oxide fuel cell module of a multi-segment type, and to secure electrical contact of the parts of the respective dense interconnectors, in contact with the fuel electrodes while attaining high gas-sealing performance by the agency of the respective dense interconnectors, and electrolytes, thereby enhancing productivity.
Owner:TOKYO GAS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products