Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

731 results about "Single test" patented technology

Esophageal diagnostic sensor

Disclosed is an esophageal catheter that is capable of simultaneously measuring impedance, hydrostatic pressure and contact pressure in an esophagus from peristaltic waves, esophageal fluid and the transit bolus in a single test episode. Circumferential impedance sensors include sensing electrodes that are oppositely disposed on the circumferential impedance sensor, and reference electrodes that are also oppositely disposed on the circumferential impedance sensor and interspersed between the sensing electrodes. Accurate impedance measurements can be made in this fashion in a transverse direction in the esophagus. A hydrostatic pressure sensor is disposed at the distal tip of the esophageal probe that has a rigid cover to protect the hydrostatic pressure sensor from contact pressures of the esophagus. In this manner, the hydrostatic pressure sensor can provide purely hydrostatic pressure data from the fluids in the esophagus. Disposed above the hydrostatic pressure sensor, at the distal end of the probe, is an optical contraction sensor that detects both hydrostatic and contact pressure, by detecting the occlusion created by a flexible membrane disposed between an optical source and an optical detector mounted longitudinally in the probe, in response to contractions at the esophagus. The output of the hydrostatic pressure sensor and the optical contraction sensor permits estimations to be made of the contact pressures created by the esophagus.
Owner:MINTCHEV MARTIN P +2

Architecture, circuitry and method for controlling a subsystem through a JTAG access port

Architecture, circuitry, and methods are provided for programming, writing to, or reading from one or more integrated circuits which may be arranged upon a printed circuit board. Programming and read / write operations can, therefore, be done after integrated circuits are populated upon a printed circuit board to control those integrated circuits using a standard JTAG interface, well-known as the IEEE Std. 1149.1 interface. A shift register used to control one or more electronic subcomponents can be programmed, written to, or read from using JTAG programming languages. However, the shift register, or multiple shift registers, used to control electronic subcomponents need not be JTAG compliant. The shift registers may be those found within proprietary circuits, such as analog-to-digital converters or digital-to-analog converters, and include any shift register than receives serial data and produces parallel data, or vice-versa, where the loading and serial shifting of data is controlled using a generic interface, such as enable, reset, capture, etc. One or more shift registers can be distributed among one or more integrated circuits proprietary to the manufacturer of that circuit, and the circuits which embody the shift registers need not have a JTAG interface. Yet, the shift registers can be controlled by a single test access port (TAP) external to the integrated circuits, but which controls the non-JTAG compliant shift registers of each integrated circuit bearing the same. This allows a JTAG programming language which can be readily obtained off-the-shelf to control integrated circuits which do not recognize JTAG control signals, nor do such integrated circuits necessarily have a JTAG four-pin interface.
Owner:MONTEREY RES LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products