Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1995 results about "Whole blood" patented technology

Whole blood (WB) is human blood from a standard blood donation. It is used in the treatment of massive bleeding, in exchange transfusion, and when people donate blood to themselves. One unit of whole blood (~517 mls) brings up hemoglobin levels by about 10 g/L. Cross matching is typically done before the blood is given. It is given by injection into a vein.

Method for determining concentration of an analyte in a test strip

The present invention provides a method of measuring an analyte, such as glucose in a fluid sample, such as whole blood, by a reflectance reading device. The method includes making periodic intermediate calculations of analyte level and dynamically ascertaining when an analytical reaction has reached an end point. Once stable, the process stops making periodic calculations and reports the final, actual glucose concentration. According to an exemplary embodiment, the method is performed by a reflectance photometer using an analytical test strip containing reagents that react with an analyte of interest in the test fluid. The end point is determined by calculating an intermediate analyte level of the testing element at predetermined intervals and calculating a ratio value corresponding to the (n)th measurement to an (n-5)th measurement. When two consecutive ratio values are less than or equal to a predetermined value, the end point is deemed reached and the final analyte level ascertained.
Owner:TRIVIDIA HEALTH

Device and method for in vitro determination of analyte concentrations within body fluids

A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Owner:OPTISCAN BIOMEDICAL

Device and method for in vitro determination of analyte concentrations within body fluids

A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Owner:OPTISCAN BIOMEDICAL

Electrochemical biosensor strip for analysis of liquid samples

A biosensor in the form of a strip. In one embodiment, the biosensor strip comprises an electrode support, a first electrode, i.e., a working electrode, a second electrode, i.e., a counter electrode, and a third electrode, i.e., a reference electrode. Each of the electrodes is disposed on and supported by the electrode support. Each of the electrodes is spaced apart from the other two electrodes. The biosensor strip can include a covering layer, which defines an enclosed space over the electrodes. This enclosed space includes a zone where an analyte in the sample reacts with reagent(s) deposited at the working electrode. This zone is referred to as the reaction zone. The covering layer has an aperture for receiving a sample for introduction into the reaction zone. The biosensor strip can also include at least one layer of mesh interposed in the enclosed space between the covering layer and the electrodes in the reaction zone. This layer of mesh facilitates transporting of the sample to the electrodes in the reaction zone. In another embodiment, a biosensor strip can be constructed to provide a configuration that will allow the sample to be introduced to the reaction zone by action of capillary force. In this embodiment, the layer of mesh can be omitted. The invention also provides a method for determining the concentration of glucose in a sample of whole blood by using the biosensor of this invention.
Owner:ABBOTT LAB INC

Lyophilization process and products obtained thereby

A lyophilization process which comprises dissolving a material in one or more solvents for said material to form a solution; forcing said material at least partially out of solution by combining the solution and a non-solvent for the material, which non-solvent is miscible with the solvent or solvents used and wherein said non-solvent is volatilizable under freeze-drying conditions. In addition, for hydrophobic and / or lipophilic materials, the anti-solvent can be omitted, and the solution of the material in the solvent can be subjected directly to freeze drying. The lyophilizates can then be reconstituted with typical aqueous diluent in the case of hydrophilic materials. Hydrophobic and or lipophilic materials can be initially reconstituted with propylene glycol and / or polyethyleneglycol to form a high concentration solution therein and this is further diluted for use with a diluent of Intralipid, plasma, serum, or even whole blood.
Owner:SCIDOSE PHARMA +1

Diagnostics based on tetrazolium compounds

InactiveUS6200773B1Bioreactor/fermenter combinationsOrganic chemistryPyrrolo-Quinoline QuinoneDiaphorase
A reagent is suitable for measuring the concentration of an analyte in a hemoglobin-containing biological fluid, such as whole blood. The reagent comprises dehydrogenase enzyme that has specificity for the analyte, NAD, an NAD derivative, pyrrolo-quinoline quinone (PQQ), or a PQQ derivative, a tetrazolium dye precursor, a diaphorase enzyme or an analog thereof, and a nitrite salt. The reagent causes dye formation that is a measure of the analyte concentration. The nitrite salt suppresses interfering dye formation caused non-enzymatically by the hemoglobin. Preferably, the reagent is used in a dry strip for measuring ketone bodies, such as beta-hydroxybutyrate.
Owner:LIFESCAN IP HLDG LLC

Reagent-less whole-blood glucose meter

A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Owner:OPTISCAN BIOMEDICAL

Analytical device with prediction module and related methods

An analytical device for predicting a subject's whole blood analyte concentration based on the subject's interstitial fluid (ISF) analyte concentration includes an ISF sampling module, an analysis module and a prediction module. The ISF sampling module is configured to sequentially extract a plurality of ISF samples from a subject. The analysis module is configured to sequentially determining an ISF analyte concentration (e.g., ISF glucose concentration) in each of the ISF samples, resulting in a series of ISF analyte concentrations. The prediction module is configured for storing the series of ISF analyte concentrations and predicting the subject's whole blood analyte concentration based on the series by performing at least one algorithm. A method for predicting a subject's whole blood analyte concentration based on the subject's interstitial fluid analyte concentration includes extracting a plurality of interstitial fluid (ISF) samples from a subject in a sequential manner and sequentially determining an ISF analyte concentration in each of the plurality of ISF samples to create a series of ISF analyte concentrations. The subject's blood analyte concentration is then predicted based on the series of ISF analyte concentrations by performing at least one algorithm.
Owner:LIFESCAN INC

Isolation of bone marrow fraction rich in connective tissue growth components and the use thereof to promote connective tissue formation

A bone marrow isolate rich in one or more connective tissue growth components, methods of forming the isolate, and methods of promoting connective tissue growth using the isolate are described. A biological sample comprising bone marrow is centrifuged to separate the sample into fractions including a fraction rich in connective tissue growth components. The fraction rich in connective tissue growth components is then isolated from the separated sample. The isolate can be used directly or combined with a carrier and implanted into a patient at a tissue (e.g., bone) defect site. The biological sample can comprise bone marrow and whole blood. The isolate can be modified (e.g., by transfection with a nucleic acid encoding an osteoinductive polypeptide operably linked to a promoter) prior to application to the tissue defect site. The isolate can be made and applied to the tissue defect site in a single procedure (i.e., intraoperatively).
Owner:MCKAY WILLIAM F +1

Diagnostic sanitary test strip

An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and / or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing. The improved test strip comprises no more than two operative layers and: (a) a reaction membrane containing a reagent capable of reacting with the analyte of interest to produce a measurable change in said membrane; (b) an upper support layer defining a sample receiving port for receiving the fluid sample thereat; (c) one or more structures for directing the sample containing the analyte of interest through at least a portion of said reaction membrane; and (d) a lower support layer having a reaction viewing port in vertical alignment with said membrane for displaying said measurable change, said lower support being associated with said upper support to secure said reaction membrane in said test strip.
Owner:NIPRO DIAGNOSTICS INC

Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics

Microfluidic devices and methods that use cells such as cancer cells, stem cells, blood cells for preprocessing, sorting for various biodiagnostics or therapeutical applications are described. Microfluidics electrical sensing such as measurement of field potential or current and phenomena such as immiscible fluidics, inertial fluidics are used as the basis for cell and molecular processing (e.g., characterizing, sorting, isolation, processing, amplification) of different particles, chemical compositions or biospecies (e.g., different cells, cells containing different substances, different particles, different biochemical compositions, proteins, enzymes etc.). Specifically this invention discloses a few sorting schemes for stem cells, whole blood and circulating tumor cells and also extracting serum from whole blood. Further medical diagnostics technology utilizing high throughput single cell PCR is described using immiscible fluidics couple with single or multi cells trapping technology.
Owner:BIOPICO SYST

Combined assay for current glucose level and intermediate or long-term glycemic control

The present invention is directed to a single test system and method for determining the integrated glycemic condition of a subject by measuring the concentration of glucose and the level of protein-bound glucose in a subject's body fluid, such as whole blood. The glucose concentration is indicative of the subject's immediate glycemic condition, whereas the protein-bound glucose concentration is indicative of either intermediate or long-term glycemic condition. Optionally, other analytes indicative of glycemic condition, such as ketone bodies or fatty acid derivatives, can also be measured. The present invention also provides a method of diagnosing diabetes. The invention additionally provides a method for analyzing the concentration of fructosamine in less than or equal to five minutes without the use of a reaction accelerator.
Owner:LIFESCAN INC

Diagnostic sanitary test strip

An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and / or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing. The improved test strip comprises no more than two operative layers and: (a) a reaction membrane containing a reagent capable of reacting with the analyte of interest to produce a measurable change in said membrane; (b) an upper support layer defining a sample receiving port for receiving the fluid sample thereat; (c) one or more structures for directing the sample containing the analyte of interest through at least a portion of said reaction membrane; and (d) a lower support layer having a reaction viewing port in vertical alignment with said membrane for displaying said measurable change, said lower support being associated with said upper support to secure said reaction membrane in said test strip.
Owner:TRIVIDIA HEALTH

Crosslinking agents and methods of use

Methods and compositions are provided for preparing protein concentrates from protein comprising aqueous compositions. In the subject methods, an initial protein comprising aqueous compositions, such as whole blood or a derivative thereof, is contacted with a non-protein denaturant hydrogel under conditions sufficient for a substantial amount of water present in the composition to be absorbed by the hydrogel, resulting in the production of a protein concentrate, such as a fibrinogen rich composition. Of particularl interest is the use of the subject methods to prepare fibrinogen rich compositions, where such compositions produced according to the subject invention are useful in fibrin sealants, drug delivery vehicles and in a number of other diverse applications.
Owner:INCEPT LLC

Method for reducing effect of hematocrit on measurement of an analyte in whole blood

A method for determining the presence and / or amount of an analyte in a sample of whole blood comprises the step of treating the sample with a nonlytic hypertonic salt composition to reduce the hematocrit by reducing the size of the red blood cells. In optical detection systems, the smaller red blood cells create greater scatter, which allows a more accurate correction to be applied in a dual-wavelength detection system. In electrochemical detection systems, as well as in optical detection systems, the smaller red blood cells provide less obstruction to the diffusion of analyte and reagents in the sample, to facilitate the reactions thereof.
Owner:ASCENSIA DIABETES CARE HLDG AG

Sample adapter

An adapter presents a sample of bodily fluid, such as whole blood, including an analyte to an analyzer window of a non-invasive monitor. The adapter comprises a base material that comprises a first side and a second side. The adapter also comprises a sample accommodating volume extending between an opening in the second side of the base material and an opening in the first side of the base material.
Owner:RULE PETER +3

Composition and method for the repair and regeneration of cartilage and other tissues

InactiveUS20060029578A1Add supportImprove coagulation/solidificationBiocideOrganic active ingredientsAbnormal tissue growthRepair tissue
The present invention relates to a new method for repairing human or animal tissues such as cartilage, meniscus, ligament, tendon, bone, skin, cornea, periodontal tissues, abscesses, resected tumors, and ulcers. The method comprises the step of introducing into the tissue a temperature-dependent polymer gel composition such that the composition adhere to the tissue and promote support for cell proliferation for repairing the tissue. Other than a polymer, the composition preferably comprises a blood component such as whole blood, processed blood, venous blood, arterial blood, blood from bone, blood from bone-marrow, bone marrow, umbilical cord blood, placenta blood, erythrocytes, leukocytes, monocytes, platelets, fibrinogen, thrombin and platelet rich plasma. The present invention also relates to a new composition to be used with the method of the present invention.
Owner:SMITH & NEPHEW ORTHOPAEDICS

Biosensor

A biosensor including an insulating base plate, an electrode system, a cover for covering the insulating base plate, at least one reaction layer, a sample solution supply pathway communicating with an air aperture at a terminal end side, a sample solution supply part and a filter provided between the sample solution supply pathway and the sample solution supply part to filter hemocytes, an end face and a top face of a primary portion of the filter are exposed and the sample solution supply part is provided adjacently to the primary side portion so as to provide an improved biosensor which allows easy addition of whole blood to the sensor and rapid supply of the added whole blood to a filter even in the case of collecting blood by fingertip centesis for measurement.
Owner:PANASONIC CORP

Joint-diagnostic spectroscopic and biosensor meter

Some embodiments of the invention provide a meter and a disposable cartridge for analyzing a fluid sample confined to the disposable cartridge. The fluid sample, particularly blood, is drawn into the cartridge by capillary action, negative pressure, positive pressure, or combination thereof. The cartridge has at least one flow path, which includes at least one optical chamber for spectroscopic measurement, and at least one biosensor for biosensor measurement. The meter has a sample slot for receiving the disposable cartridge. The cartridges have electrical output contacts, and the meter slot has electrical input contacts. When the output contacts mate with the input contacts, the optical chamber becomes positioned for spectroscopic measurement. Neither biosensors nor spectroscopy can be used alone to measure key analytes in blood for effective patient care. The present invention provides joint-diagnostic spectroscopic and biosensor measurements. Optionally, plasma can be extracted from whole blood, for measuring analytes that cannot be measured accurately in whole blood. The invention provides a wider panel of blood analytes using as little as a drop of blood, at the point of patient care.
Owner:CHROMEDX

Fluorescence detector, filter device and related methods

Microfluidic assay detectors and microfluidic assay detection methods are disclosed. A microfluidic chip is coupled to a light emitting device, emission filters and excitation filters. Excited fluorescent light is detected by a camera and a lens. The correspondent reading allows parallel detection of features such as antigens and biomarkers. A microfluidic filter and related methods are also disclosed. The filter can be used with on-chip fluid filtration such as whole blood filtration for microfluidic blood analysis. The filter is able to filter the necessary volume of fluid and in particular blood in an acceptable time frame.
Owner:CALIFORNIA INST OF TECH

Methods and apparatus for isolating platelets from blood

A platelet collection device comprising a centrifugal spin-separator container with a cavity having a longitudinal inner surface. A float in the cavity has a base, a platelet collection surface above the base, an outer surface. The float density is below the density of erythrocytes and above the density of plasma. The platelet collection surface has a position on the float which places it below the level of platelets when the float is suspended in separated blood. During centrifugation, a layer of platelets or buffy coat collects closely adjacent the platelet collection surface. Platelets are then removed from the platelet collection surface. Movement of a float having a density greater than whole blood through the sedimenting erythrocytes releases entrapped platelets, increasing the platelet yield.
Owner:DORIAN RANDEL +2

Nucleic acid isolation in preserved whole blood

A method for isolating nucleic acids is disclosed, wherein a sample having nucleic acid containing starting material is fixed, lysed, and treated to remove unwanted contaminants. The initial fixing of the sample aids in maintaining the structure and integrity of the isolated DNA and reduces the incidence of end product contaminants and DNA shearing.
Owner:STRECK INC

Methods and apparatus for isolating platelets from blood

A platelet collection device comprising a centrifugal spin-separator container with a cavity having a longitudinal inner surface. A float in the cavity has a base, a platelet collection surface above the base, an outer surface. The float density is below the density of erythrocytes and above the density of plasma. The platelet collection surface has a position on the float which places it below the level of platelets when the float is suspended in separated blood. During centrifugation, a layer of platelets or buffy coat collects closely adjacent the platelet collection surface. Platelets are then removed from the platelet collection surface. Movement of a float having a density greater than whole blood through the sedimenting erythrocytes releases entrapped platelets, increasing the platelet yield.
Owner:HANUMAN

Process, composition and kit for providing a stable whole blood calibrator/control

The present invention is directed toward a stable calibrator and / or control, kit and process for using in a glucose monitoring instrumentation. Principally, the instant invention teaches a glycolyzed red blood cell component which has been treated with a glycolysis stabilizing effective amount of at least one non-crosslinking aldehyde compound which may be added to fresh plasma along with an amount of glucose to form a simulated whole blood glucose control product, effective for maintaining a particular and essentially stable glucose concentration over a period of time sufficient for accurate measurement and calibration of a glucose measuring instrument.
Owner:STRECK INC

Biosensor

To provide an improved biosensor which allows easy addition of whole blood to the sensor and rapid supply of the added whole blood to a filter even in the case of collecting blood by fingertip centesis for measurement, a second air aperture is provided in a sample solution supply pathway including an electrode system and a reaction layer and communicating with a first air aperture on the terminal end side.
Owner:PANASONIC CORP

Method and apparatus for therapeutic apheresis

A method for carrying out therapeutic apheresis comprises separating plasma from whole blood in-vivo and removing selected disease-related components from the separated plasma. Apparatus for carrying out therapeutic apheresis includes a filter device for being implanted in a blood vessel for carrying out in-vivo plasma separation having one or more elongated hollow tubes and a plurality of elongated hollow microporous fibers capable of separating plasma from whole blood at pressure and blood flow within a patient's vein, a multiple lumen catheter secured to the proximal end of the filter device having one or more lumens in fluid communication with the interior of said one or more hollow tubes and a plasma return lumen, and therapeutic apheresis apparatus for removing and / or separating selected disease-related components from the separated plasma and means for directing plasma between said catheter and the selective component removal apparatus.
Owner:TRANSVIVO

System and methods for providing corrected analyte concentration measurements

Methods and devices for determining the concentration of a constituent in a physiological sample are provided. The physiological sample is introduced into an electrochemical cell having a working and counter electrode. At least one electrochemical signal is measured based on a reaction taking place at the cell. The preliminary concentration of the constituent is then calculated from the electrochemical signal. This preliminary concentration is then multiplied by a hematocrit correction factor to obtain the constituent concentration in the sample, where the hematocrit correction factor is a function of the at least one electrochemical signal. The subject methods and devices are suited for use in the determination of a wide variety of analytes in a wide variety of samples, and are particularly suited for the determination of analytes in whole blood or derivatives thereof, where an analyte of particular interest is glucose.
Owner:NIPRO DIAGNOSTICS INC

Method for performing a blood count and determining the morphology of a blood smear

A method for counting blood cells in a sample of whole blood. The method comprises the steps of:(a) providing a sample of whole blood;(b) depositing the sample of whole blood onto a slide, e.g., a microscope slide;(c) employing a spreader to create a blood smear;(d) allowing the blood smear to dry on the slide;(e) measuring absorption or reflectance of light attributable to the hemoglobin in the red blood cells in the blood smear on the slide;(f) recording a magnified two-dimensional digital image of the area of analysis identified by the measurement in step (e) as being of suitable thickness for analysis; and(g) collecting, analyzing, and storing data from the magnified two-dimensional digital image.Optionally, steps of fixing and staining of blood cells on the slide can be employed in the method.
Owner:ABBOTT LAB INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products