Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

195 results about "Glucose control" patented technology

Method to determine the degree and stability of blood glucose control in patients with diabetes mellitus via the creation and continuous update of new statistical indicators in blood glucose monitors or free standing computers

Microvascular complications of diabetes mellitus are closely related to blood glucose levels and fluctuations. The Glycostator statistical package was created to allow patients and health care providers simple access to “glycemic indicators” which permit a “snapshot view” of the effectiveness of the patient's diabetes management program. Glycostator functions provide a simple way of enhancing the information already provided by home blood glucose monitoring devices. To this end, a set of new indices, including one called the Virtual A1c, are computed in a recursive fashion from blood glucose test results to provide a more meaningful day-to-day assessment of glycemic control. All indices can be made available at the meter user interface on request. The displayed indices allow patients to improve glycemic control by identifying problems with blood glucose control and lability that are less easily recognized in traditional blood glucose meter statistical packages. Virtual A1c emulates hemoglobin A1c continuously and provides better day-to-day assessment of long term glycemic control than does the traditional average blood glucose report. The method for computing each of these indices, including the Virtual A1c, allows for their implementation in commercial blood glucose monitors.
Owner:ROCHE DIABETES CARE INC

Polypeptide production in animal cell culture

A method of producing a polypeptide in fed batch cell culture is provided which involves an initial cell growth phase and a distinct production phase. In the initial growth stage, animal cells having nucleic acid encoding the polypeptide are cultured at a starting osmolality of about 280-330 mOsm in the presence of a concentration of glucose controlled throughout the culturing to be within a range between about 0.01 and 1 g/L. This is followed by a production phase, where the cultured animal cells of the growth phase are inoculated at a cell seed density of at least 1.0×106 cells/mL and the cells are cultured at a starting osmolarity of about 400-600 mOsm in the presence of a concentration of glucose controlled throughout the culturing to be within a range between about 0.01 and 1 g/L. Preferably, the glutamine concentration in the cell culture medium is simultaneously controlled in order to curtail production of lactic acid and ammonia which result from unnecessarily high glutamine concentrations. During the growth phase, production of potentially detrimental metabolic waste products, such as lactic acid, is controlled thereby curtailing the increase of osmolality due to accumulation and neutralization of waste products. Thus, the cell growth can be improved. In the production phase, the cell culture conditions are modified in order to arrest or reduce cell growth and thereby direct nutrient utilization toward production, as opposed to cell growth. Overall, it is intended that the method results in an improvement in specific productivity, reduction in production run times and/or an increase in final product concentration.
Owner:GENENTECH INC

Fully automated control system for type 1 diabetes

An augmented, adaptive algorithm utilizing model predictive control (MPC) is developed for closed-loop glucose control in type 1 diabetes. A linear empirical input-output subject model is used with an MPC algorithm to regulate blood glucose online, where the subject model is recursively adapted, and the control signal for delivery of insulin and a counter-regulatory agent such as glucagon is based solely on online glucose concentration measurements. The MPC signal is synthesized by optimizing an augmented objective function that minimizes local insulin accumulation in the subcutaneous depot and control signal aggressiveness, while simultaneously regulating glucose concentration to a preset reference set point. The mathematical formulation governing the subcutaneous accumulation of administered insulin is derived based on nominal temporal values pertaining to the pharmacokinetics (time-course of activity) of insulin in human, in terms of its absorption rate, peak absorption time, and overall time of action. The MPC algorithm is also formulated to provide control action with an integral effect, and in essence minimizes overall drug consumption. When employed as a modulator in an automated integrated glucose-control system for type 1 diabetes, the control algorithm provides the system with self-learning capability that enables it to operate under unrestricted activity of the subject.
Owner:TRUSTEES OF BOSTON UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products