Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

285 results about "Vanadyl sulfate" patented technology

Vanadyl(IV) sulfate describes a collection of inorganic compounds of vanadium with the formula , VOSO₄(H₂O)ₓ where 0≤x≤6. The pentahydrate is common. This hygroscopic blue solid is one of the most common sources of vanadium in the laboratory, reflecting its high stability. It features the vanadyl ion, VO²⁺, which has been called the "most stable diatomic ion."

Electrochemical treatment method for improving vanadium cell electrode material activity

The invention relates to the field of battery manufacturing and energy storage, in particular to an electrochemical treatment method for improving the activity of vanadium cell electrode materials. Graphite felt or carbon felt which is used as anode is immerged in active electrolyte and carries out electrochemical active treatment in an electrobath with a certain current density and time, then the graphite felt or carbon felt is washed and dried for obtaining activated graphite felt or carbon felt electrode material. The method carries out moderate and controllable electrochemical anode activation treatment by choosing suitable activated electrolyte and current density, and overcomes the disadvantages that the stability of the electrode material is deceased owning to overoxidation of the material caused by heat and acid treatment and the service life of the battery is reduced; the method has simple process and low cost. The graphite felt or carbon felt treated by the method is used as electrode and takes a cation-exchange membrane as a diaphragm, and the anode and cathode electrolytes are 1.5M of vanadyl sulfate and 2M of sulphuric acid; after the battery is combined, the ohm internal resistance is greatly reduced, and the current efficiency, voltage efficiency and energy efficiency of the battery are obviously improved.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Preparation method for vanadyl sulfate electrolyte of all-vanadium flow battery

The invention discloses a preparation method for vanadyl sulfate electrolyte of an all-vanadium flow battery. The preparation method is characterized by comprising the following steps of: adjusting pH value of vanadyl sulfate solution obtained from leaching vanadium slag and stone coal, back extracting and resin-analyzing treatments by using oxide or hydroxide of alkali metal or alkaline earth; adding an inorganic reducing agent; performing multi-grade counter-current extraction by using P204 or P507: TBP: sulfonated kerosene extracting agent; after the two-phase separation, washing the vanadium-loaded organic phase; performing 2-5 grades of multi-grade counter-current back extraction on the vanadium-loaded organic phase by using sulfuric acid solution to obtain the back extracting liquid of vanadyl sulfate; adjusting the pH value of the back extracting liquid of vanadyl sulfate, adding the organic reducing agent to adjust the potential value of the solution; extracting the solution by using the extracting agent; after the two-phase separation, washing the vanadium-loaded organic phase by using the sulfuric acid solution; performing multi-grade counter-current back extraction by using the sulfuric acid solution to obtain the vanadyl sulfate solution; and distilling until the concentration required for all-vanadium flow battery. The method provided by the invention can improve the purity, simplify the preparation procedure and reduce the cost.
Owner:GUANGDONG INST OF RARE METALS

Combined chemical-electrochemical method for preparing vanadium redox flow battery electrolyte

The invention relates to a combined chemical-electrochemical method for preparing an all-vanadium redox flow battery electrolyte. The method adopts a solid or solution containing soluble vanadate, especially vanadium slag leachate obtained after steel-making with vanadic titano-magnetite, for production of a high-purity high-concentration vanadium electrolyte. The method is characterized in that a vanadyl sulfate electrolyte with a sulfuric acid concentration of 1 to 6 mol/L and a vanadium concentration of 1 to 5 mol/L can be prepared through impurity removal, acidic vanadium precipitation, multiple alkaline leaching and vanadium precipitation, calcination and reduction, an electrochemical process is cooperatively used so as to prepare a 3.5-valent or 3-valent vanadium electrolyte, and after electrolysis, the vanadium electrolyte of a positive electrode can be repeatedly used through chemical reduction. The method provided by the invention can treat the vanadium slag leachate and the solid or solution containing soluble vanadate and has the advantages of simple process flow, mild reaction conditions, substantially reduced cost, etc.; and the prepared high-purity high-concentration vanadium electrolyte is especially applicable to an all-vanadium redox flow battery.
Owner:NO 63971 TROOPS PLA +1

Process for extracting vanadium and chromium from chromic slag by using waste acid of titanium powder plant

The invention discloses a method for separating and extracting vanadium and chromium. The method comprises the following steps of: (1) producing chromium fine sand (Cr2O3) of which the content is over 80 percent and ferric vandate of which the content is over 20 percent from two waste materials by taking waste acid of a titanium powder plant as a leaching agent and vanadium-chromium slag (containing 2.5 to 4.5 percent of vanadium and 14 to 25 percent of chromium) as a raw material; (2) putting the vanadium-chromium slag into the waste acid to allow the chromium and the vanadium in the slag to form chromium sulfate and vanadyl sulfate which can be dissolved in water very easily, wherein the leaching time is about 6 hours; (3) adding a certain amount of steel making steel slag during leaching to fulfill the aim of generating a great deal of calcium sulfate when a great deal of calcium oxide meets the acid during filtration, and wrapping, adsorbing or and stopping 'silica gel' formed by silicon dioxide in the chromium slag by the calcium sulfate which is used as a filter medium to ensure that the filtration is performed smoothly; (4) adjusting the pH value of the filtrate to be 2.5 by using sodium hydroxide, and then adding an oxidant and oxydol to ensure that the chromium in the solution is oxidized to be hexavalent, the iron is oxidized to be trivalent, and the vanadium is oxidized to be pentavalent; (5) heating the leaching solution to the temperature of between 70 and 90 DEG C to ensure that the vanadium and the iron is combined together to generate water-fast 'ferric vandate', wherein the time for thermal precipitation is about one hour, and the vanadium residual in the solution is not more than 0.4 g / L; (6) adding sodium hydroxide into the solution of which the ferric vandate is filtered out, and fully stirring the mixture until the pH value of the solution is between 5.5 and 5.9 to ensure that the chromium in the solution is completely converted into chromium.
Owner:PANZHIHUA SHUOSHENG IND & TRADING

Method for separating vanadium and chromium solution and recycling vanadium and chromium

The invention discloses a method for separating a vanadium and chromium solution and recycling vanadium and chromium. A reducing agent is added to the vanadium and chromium solution under the condition that the pH value ranges from 8 to 14, and the temperature ranges from 20 DEG C to 100 DEG C, and pentavalent vanadium and hexavalent chromium are reduced into tetravalent vanadium and trivalent chromium; the trivalent chromium forms chromic hydroxide precipitate in situ, and a chromic hydroxide filter cake and vanadium-containing filtrate are obtained through filtering; the chromic hydroxide filter cake is used for preparing chromic oxide; and the vanadium-containing filtrate is used for preparing hydration vanadium dioxide or vanadyl sulfate or vanadium pentoxide. By means of the method, efficient separation and recovery of vanadium and chromium are achieved, the vanadium recovery rate reaches 96% or higher, the chromium recovery rate reaches 98% or higher, and the purity of vanadium and chromium products reaches 98% or higher. The method has the beneficial effects that the technological processes are short, the separation efficiency is high, the cost of raw materials and auxiliary materials is low, operation is easy and convenient, and the method can be used for large-scale industrial production.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP

Preparation method of high-purity vanadyl sulfate, electrolyte prepared from high-purity vanadyl sulfate, and vanadium redox battery applying high-purity vanadyl sulfate

The invention provides a preparation method of high-purity vanadyl sulfate, an electrolyte prepared from high-purity vanadyl sulfate, and a vanadium redox battery applying high-purity vanadyl sulfate. The preparation method comprises the following steps: coarse vanadium pentoxide is directly dissolved in concentrated sulphuric acid to form an activation-induced mixture, and the mixture is added in deionized water to be dissolved and filtered to obtain a solution containing pentavalent vanadium ions and sulfuric acid; the solution containing pentavalent vanadium ions and sulfuric acid is taken as a cathode electrolyte, a sulfuric acid solution is taken as an anode electrolyte, the pH value of the cathode electrolyte is controlled to be 2.2-2.4, and the impurity-removal constant-current electrolysis is carried out, so as to deposit chromium ions in the anode electrolyte on a cathode; chromium on the cathode is removed, and then is subjected to constant-voltage electrolysis to obtain a vanadyl sulfate solution; the vanadyl sulfate solution is evaporated to dryness to obtain vanadyl sulfate containing crystallization water. The preparation method has the advantages that the high-purity vanadyl sulfate crystal suitable for being applicable to the vanadium redox battery and is convenient to transport.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP

Enhanced ion-exchange membrane for enhanced vanadium cell and preparation method thereof

The invention, relating to the field of cell manufacturing and energy storage, discloses an enhanced ion-exchange membrane for a vanadium cell, solving the problems that Nafion membranes have low vanadium resistance and have influence on vanadium cell performances in the prior art. The preparation method is characterized by carrying out ultrasonic dispersion on the prepared nano carbon particles containing functional groups in a Nafion resin solution, and then conducting cast molding to obtain the enhanced membrane material. According to the method, by doping the nano carbon material whose surface contains functional groups (carboxyl or hydroxyl, etc.) in a matrix membrane material to enhance the vanadium resistance and ion exchange rate of the membrane material, thus the energy storage efficiency of the cell can be raised. The prepared ion-exchange membrane has outstanding stability. The cell performance is tested by using the prepared membrane material as a cell membrane and using 1.5M vanadyl sulfate and 2M sulfuric acid as an electrolyte, and the cell performance is obviously raised. The result of the test by vanadium resistance experiments shows that the vanadium resistance of the membrane is obviously raised.
Owner:辽宁科京新材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products