Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

375results about "Hybrid cell details" patented technology

Advanced Metal-Air Battery Having a Ceramic Membrane Electrolyte Background of the Invention

A metal-air battery is disclosed in one embodiment of the invention as including a cathode to reduce oxygen molecules and an alkali-metal-containing anode to oxidize the alkali metal (e.g., Li, Na, and K) contained therein to produce alkali-metal ions. An aqueous catholyte is placed in ionic communication with the cathode to store reaction products generated by reacting the alkali-metal ions with the oxygen containing anions. These reaction products are stored as solutes dissolved in the aqueous catholyte. An ion-selective membrane is interposed between the alkali-metal containing anode and the aqueous catholyte. The ion-selective membrane is designed to be conductive to the alkali-metal ions while being impermeable to the aqueous catholyte.
Owner:FIELD UPGRADING USA INC

Energy storage device

An energy storage device comprising at least one negative electrode, wherein each negative electrode is individually selected from (i) an electrode comprising negative battery electrode material; (ii) an electrode comprising capacitor electrode material; (iii) a mixed electrode comprising either—a mixture of battery and capacitor electrode material or—a region of battery electrode material and a region of capacitor electrode material, or—a combination thereof, and wherein the energy storage device either comprises at least one electrode of type (iii), or comprises at least one electrode of each of types (i) and (ii),—at least one positive electrode, wherein the positive electrode comprises positive battery electrode material and a charging ability-increasing additive, such as one or a mixture of: (a) carbon nanomaterial, vapour grown carbon fibre, fullerene, or a mixture thereof, and (b) tin dioxide conductive materials.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Polymer adhesive seals for protected anode architectures

Protected anode architectures for active metal anodes have a polymer adhesive seal that provides an hermetic enclosure for the active metal of the protected anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping. The architecture is formed by joining the protected anode to an anode container. The polymer adhesive seals provide an hermetic seal at the joint between a surface of the protected anode and the container.
Owner:POLYPLUS BATTERY CO INC

Zinc air battery and its uses

The invention is a method for increasing the airflow to a zinc-air battery such that the energy density is 500 mwh / cc to 1000 mwh / cc. This allows 8 to 16 hours use as a primary (throw-away) battery, with, for example, high-duty cycle, high-drain cochlear implants, and neuromuscular stimulators for nerves, muscles, and both nerves and muscles together. The systems incorporating the high energy density source are also part of the invention, as well as the resulting apparatus of the method. The uses of this inexpensive, i.e., a $1.00 per day, throw-away primary battery are new uses of the modified zinc-air battery and are directed toward helping people hear again, walk again, and regain body functionality which they have otherwise lost permanently.
Owner:ALFRED E MANN FOUND FOR SCI RES

Battery pack

A battery pack includes at least one battery module comprising a plurality of unit cells stacked together; and at least one thermoelectric module on the at least one battery module, wherein the thermoelectric module may include a Peltier device having an input terminal configured to receive a polarity-convertible current.
Owner:SAMSUNG SDI CO LTD +1

Solid state lithium-air based battery cell

In an example, the present invention provides a solid state battery device, e.g., battery cell or device. The device has a current collector region and a lithium containing anode member overlying the current collector region. The device has a thickness of electrolyte material comprising a first garnet material overlying the lithium containing anode member. The thickness of electrolyte material has a density ranging from about 80 percent to 100 percent and a porous cathode material comprising a second garnet material overlying the thickness of electrolyte material. The porous cathode material has a porosity of greater than about 30 percent and less than about 95 percent and a carbon bearing material overlying a surface region of the porous cathode material. In an example, the carbon bearing material comprises substantially carbon material, although there can be variations.
Owner:QUANTUMSCAPE BATTERY INC

Air battery system

A main object of the present invention is to provide an air battery system which can restrain the internal resistance caused by the shortage of liquid electrolyte from increasing and which can carry out a high-rate discharge. The present invention resolves the above-mentioned object by providing an air battery system comprising: an air battery cell which contains an air cathode, an anode, and a separator; and an oxygen gas supply means for supplying an oxygen gas by bubbling to a liquid electrolyte, characterized in that the air cathode further contains an air cathode layer containing a conductive material, and an air cathode current collector for collecting current of the air cathode layer; the anode further contains an anode layer containing an anode active material which stores and releases a metal ion, and an anode current collector for collecting current of the anode layer; and the separator is provided between the air cathode layer and the anode layer, and characterized in that the air cathode layer and the anode layer are constantly filled with the liquid electrolyte at a time of a change in a volume of the electrode caused by a discharge or a discharge and charge.
Owner:TOYOTA JIDOSHA KK

Rechargeable electrochemical energy storage device

A rechargeable energy storage device is disclosed. In at least one embodiment the energy storage device includes an air electrode providing an electrochemical process comprising reduction and evolution of oxygen and a capacitive electrode enables an electrode process consisting of non-faradic reactions based on ion absorption / desorption and / or faradic reactions. This rechargeable energy storage device is a hybrid system of fuel cells and ultracapacitors, pseudocapacitors, and / or secondary batteries.
Owner:IMRA AMERICA

Metal-air battery having folded structure and method of manufacturing the same

A metal-air battery including: a negative electrode metal layer; a negative electrode electrolyte layer disposed on the negative electrode metal layer; a positive electrode layer disposed on the negative electrode electrolyte layer, the positive electrode layer comprising a positive electrode material which is capable of using oxygen as an active material; and a gas diffusion layer disposed on the positive electrode layer, wherein the negative electrode electrolyte layer is between the negative electrode metal layer and the positive electrode layer; wherein the negative electrode metal layer, the negative electrode electrolyte layer, and the positive electrode layer are disposed on the gas diffusion layer so that the positive electrode layer contacts a lower surface and an opposite upper surface of the gas diffusion layer, and wherein one side surface of the gas diffusion layer is exposed to an outside.
Owner:SAMSUNG ELECTRONICS CO LTD

Electrolyte for all-vanadium redox flow battery and preparation method thereof, and all-vanadium redox flow battery including the electrolyte

The invention provides an electrolyte for an all-vanadium redox flow battery and a preparation method thereof, and an all-vanadium redox flow battery including the electrolyte. The electrolyte for an all-vanadium redox flow battery comprises anode electrolyte and cathode electrolyte which contain vanadiferous ions and sulfate ions, concentration of the sulfate ions in the anode electrolyte is more than that of the sulfate ions in the cathode electrolyte, the total vanadium concentration of the anode electrolyte and the cathode electrolyte is 2.0-8.0mol / L respectively. The preparation method of the electrolyte for an all-vanadium redox flow battery comprises the following steps: dissolving one or more vanadium oxides and optional reducers in sulfuric acid solution with a first concentration and a second concentration respectively to obtain an anode electrolyte precursor and a cathode electrolyte precursor with the total vanadium concentration of 2.0-8.0mol / L respectively, wherein, the first concentration is larger than the second concentration; and electrolyzing the anode electrolyte precursor and the cathode electrolyte precursor respectively to obtain the anode electrolyte and the cathode electrolyte of the all-vanadium redox flow battery.
Owner:大力储能技术湖北有限责任公司

Metal air cell system

A Metal air cell and cell system is provided. In general, the cell includes a cathode structure comprising opposing cathode portions and a space configured for receiving an anode structure. The anode structure includes a pair of rigid structures having plural apertures for allowing ionic communication and anode material between the rigid structures. A separator is disposed between the anode and the cathode to electrically isolate the anode and the cathode. The rigid structures of the anode structure facilitate removal of the anode structure from the cathode structure. In certain embodiments, anode structures are formed with bimodal gelling agents to promote an even distribution of anode material and electrolyte gel.
Owner:EVIONYX INC

Gas scrubber and method related thereto

A galvanic cell utilizing a gas scrubber is provided. The galvanic cell may include a galvanic cell unit and a gas scrubber comprising an active material layer, a resistance coil in contact with the active material layer, a first shutter positioned between the active material layer and ambient air, a second shutter may be positioned between the galvanic cell unit and the active material layer.
Owner:GENERAL ELECTRIC CO

Hybrid Battery

Disclosed herein is a hybrid battery using an electrochemically stable electrolyte composition and electrodes suitable for use in the electrolyte composition. The hybrid battery is non-toxic and highly stable, and has improved high-current charge / discharge characteristics.The hybrid battery comprises an electrode unit consisting of an anode and a cathode, a separator for electrically separating the anode and the cathode, and an electrolyte filled in a space between the anode and the cathode so as to form an electric double layer on surfaces of the anode and cathode when a voltage is applied wherein the electrolyte contains a mixture of a lithium salt, an ammonium salt and a pyrrolidinium salt as solutes in a carbonate-based solvent so that the solute mixture has a concentration of 1.0-2.5 mol / L.
Owner:VINATECH CO LTD

Electrical power source

A portable power supply coupled to a garment, carrying bag, or other apparatus, is adapted for receiving energy at a solar cell or by way of a power input port for operating and charging a portable device. Power is stored within the power supply in one or more batteries or other storage devices. An output of the portable power supply is adapted to be reconfigured so as to be coupled to various types of portable device.
Owner:MARGALIT EREZ

Hybrid Solid State Electrolyte for Lithium Secondary Battery

Provided is a solid state electrolyte for a rechargeable lithium battery, comprising a lithium ion-conducting polymer matrix or binder and a lithium ion-conducting inorganic species dispersed in or chemically bonded by the polymer matrix or binder, wherein the lithium ion-conducting inorganic species is selected from a mixture of a sodium-conducting species or sodium salt and a lithium-conducting species or lithium salt selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, or a combination thereof, wherein X=F, Cl, I, or Br, R=a hydrocarbon group, x=0-1, y=1-4; and wherein the polymer matrix or binder is in an amount from 1% to 99% by volume of the electrolyte composition. Also provided are a process for producing this solid state electrolyte and a lithium secondary battery containing such a solid state electrolyte.
Owner:GLOBAL GRAPHENE GRP INC

Optimised energy storage device

A lead-acid battery comprising:—at least one negative electrode comprising lead-based battery electrode material and at least one region of capacitor material overlying the lead-based battery electrode material, each electrode being in electrical connection to an outer terminal of the battery, and—at least one positive lead-dioxide based battery electrode, each positive electrode being in electrical connection to a second outer terminal of the battery,—separator interleaving the facing electrodes;—electrolyte filling at least the space of the electrodes and separators wherein the capacitor material overlying the lead-based battery electrode material comprises 20-65% by weight of a high electrical conductivity carbonaceous material, 30-70% of a high specific surface area carbonaceous material, at least 0.1% lead and binder.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Optimised energy storage device having capacitor material on lead based negative electrode

A lead-acid battery comprising: —at least one negative electrode comprising lead-based battery electrode material and at least one region of capacitor material overlying the lead-based battery electrode material, each electrode being in electrical connection to an outer terminal of the battery, and —at least one positive lead-dioxide based battery electrode, each positive electrode being in electrical connection to a second outer terminal of the battery, —separator interleaving the facing electrodes; —electrolyte filling at least the space of the electrodes and separators wherein the capacitor material overlying the lead-based battery electrode material comprises 20-65% by weight of a high electrical conductivity carbonaceous material, 30-70% of a high specific surface area carbonaceous material, at least 0.1% lead and binder.
Owner:COMMONWEALTH SCI & IND RES ORG +1

Interpenetrating Network of Anion-Exchange Polymers, Production Method Thereof and Use of Same

The invention relates to a method for producing an anion-exchange polymer material having an IPN or semi-IPN structure, said method consisting in: (A) preparing a homogeneous reaction solution containing, in a suitable organic solvent, (a) at least one organic polymer bearing reactive halogen groups, (b) at least one tertiary diamine, (c) at least one monomer comprising an ethylenic unsaturation polymerizable by free radical polymerization, (d) optionally at least one cross-linking agent including at least two ethylenic unsaturations polymerizable by free radical polymerization, and e) at least one free radical polymerization initiator; and (B) heating the prepared solution to a temperature and for a duration that are sufficient to allow both a nucleophilic substitution reaction between components (a) and (b) and a free radical copolymerization reaction of components (c) and optionally (d) initiated by component (e). The invention also relates to the resulting IPN or semi-IPN material and to the use thereof in electrochemical devices, in direct contact with an air electrode.
Owner:ELECTRICITE DE FRANCE +1

Asymmetric secondary air fuel battery

This invention relates to a new type of asymmetrical secondary air fuel batteries, in which, the positive of the material is an air pole taking Mn oxide as the catalyst, and the negative is a pole material inserted with Na or Li ions and the electrolyte is a gel electrolyte containing Na or Li salt, in the process of charging or discharging, the air pole as the positive recovers or releases oxygen and the negative is inserted or separated with Li or Na ions so as to constitute a new type of asymmetrical air fuel battery.
Owner:FUDAN UNIV

PEM water electrolysis for oxygen generation method and apparatus

A PEM based water electrolysis stack consists of a number of cells connected in series by using interconnects. Water and electrical power (power supply) are the external inputs to the stack. Water supplied to the oxygen electrodes through flow fields in interconnects is dissociated into oxygen and protons. The protons are transported through the polymer membrane to the hydrogen electrodes, where they combine with electrons to form hydrogen gas. If the electrolysis stack is required to be used exclusively as an oxygen generator, the hydrogen gas generated would have to be disposed off safely. The disposal of hydrogen would lead to a number of system and safety related issues, resulting in the limited application of the device as an oxygen generator. Hydrogen can be combusted to produce heat or better disposed off in a separate fuel cell unit which will supply electricity generated, to the electrolysis stack to reduce power input requirements. This however, will add to system complexity, cost and efficiency loss. The present invention provides an improved method and a simple system for the production of oxygen.
Owner:COMMONWEALTH SCI & IND RES ORG

Electrochemical cell, electrochemical cell module comprising the electorchemical cell, and preparation method of the electrochemical cell

An electrochemical cell including: an anode assembly having opposite surfaces; and a cathode having at least one folded portion and having ionic continuity with the opposite surfaces of the anode assembly, wherein the anode assembly includes an anode, and an active metal ion conducting membrane that is disposed between the anode and the cathode, wherein the active metal ion conducting membrane has at least one folded portion. Also an electrochemical cell, an electrochemical cell module including the electrochemical cell, and methods of manufacturing the same.
Owner:SAMSUNG ELECTRONICS CO LTD

All-vanadium redox flow battery electrolytic solution preparation method

The invention relates to a method for preparing electrolyte for a flow battery with full vanadium oxidation reduction, which is characterized by the processes: mixing the three oxidation vanadium and the sulphuric acid with a specified volume of proportion of 1. 84, then calcining the mixture under 100 DEG C to 300DEG C in a pipe type electric stove to get vanadium compound in green color, at last dissolving the calcined product into the dilute sulfuric acid to get the vanadium electrolyte used in a vanadium battery in which 4 valence vanadium and 3 valence vanadium take 50 per cent of the total vanadium quantity. The electrolyte for a flow battery with whole vanadium oxidation reduction prepared by the method reduces the emission of SO2, simplifies the preparation work procedure and is beneficial for scale production and environment protection of the flow battery with full vanadium oxidation reduction.
Owner:PANZHIHUA UNIV

Zinc-nickel static single fluid flow battery

A copper nickel statical single fluid stream battery is composed of a battery pile coupled by multi-section of battery monomers, electrolyte, a battery container and a sediment tank, wherein the battery monomers comprise a nickel electrode anode, a cathode current collector of the sediment zinc, a baffle plate and a liquid injection cover. The cathode active materials are dissolved and stored in the electrolyte, and two battery monomers of the series battery pile are connected in series by the positive and negative electrode connectors. In the charging and discharging processes, the active material dissolvable zinc salt in the electrolyte is converted with the metallic zinc on the cathode current collector backwards and forwards. The invention eliminates the solution storage tank and the liquid pump in the traditional fluid stream battery, realizes the dynamic loop of the active materials in the inner of the battery electrolyte, with small volume, high working pressure, long service life, convenient carrying, which is suitable to be used as the movable power with low cost.
Owner:CENT SOUTH UNIV

Photocatalytic methods for preparation of electrocatalyst materials

The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).
Owner:TOYOTA MOTOR CO LTD +1

Method for preparing electrolyte for vanadium redox flow battery

The present invention relates to a preparation method for electrolyte of vanadum oxidation-reduction liquid stream. It contains 1, putting weight ratio 1.5-2.5 :1 vanadium trioxide and vanadium pentoxide powder in furnace and calcination at 200-700 degree centigrade, to make yellow powder became black powder to obtain multivalent vanadum compound, wherein quadravalence vanadum greater than total vanadum by 50 per cent, 2, adding distilled water in specific gravity 1.84 concentrated sulfuric acid to proceed 2 : 1 diluting then adding above-mentioned compound, according to mass fraction preparation to 65-75 per cent concentration vanadyl sulfate solution, wherein total vanadum concentration in 25-45 per cent, 3, adding 1-10 per cent concentration alkali salt or alkali salt and alkaline earth metal salt. Said invention adds additive in vanadyl sulfate solution, which not only raising vanadum ion solubility, preferably solving crystallizing jamming battery flow field problem in charge discharge process, but also reducing vanadium ion osmotic problem in film, greatly raising battery energy source efficiency.
Owner:缪强
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products