Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1785 results about "Ammonium metavanadate" patented technology

Ammonium metavanadate is the inorganic compound with the formula NH₄VO₃. It is a white solid, although samples are often yellow owing to impurities of V₂O₅. It is an important intermediate in the purification of vanadium.

Method for separating and reclaiming vanadium and chromium from solution containing vanadium and chromium

This invention relates to an entirely new technology of completely recovering chromium and vanadium from vanadium-chromium miscible liquid. The main procedures include: first a primary-secondary compound amine extracting agent contacts the vanadium-chromium miscible liquid by means of countercurrent contact and extract, so as to extract most of vanadium and a small amount of chromium into a organic phase while most of chromium stays into a aqueous phase; and a reduction reaction is conducted with pH of acid adjustable faffinate (aqueous phase) and a certain amount of a reducing agent; the sodium hydroxide is used for adjusting pH value of the solution and filter, and finally the product is hydrous chromium oxide; at that time, the lye is used as a stripping agent; the vanadium is stripped from the vanadium-rich organic phase into water in the manner of countercurrent contact; and the vanadium is separated from the solution witthe method of ammonium precipitation and in the form of ammonium metavanadate; and finally the supernatant clear solution of the one is processed with deposited vanadium with a high-efficient distillation technology, and the strong aqua ammonia is left in the tower top and deamidization solution is left in the tower bottom until the extraction process is reached. The invention uses the primary-secondary compound amine as the extracting agent, extracts and separates vanadium and chromium selectively at a low temperature. The invention not only has a simple process flow, but also is low-cost, quite applicable in large-scale industrial production. In addition, the invention also provides high-purity ammonium metavanadate and 16 percentage strong aqua ammonia, and makes sure the vanadium and chromium can be completely recovered through re-use of the solution.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Method for recovering tungsten trioxide and ammonium metavanadate from selective catalytic reduction (SCR) denitration catalyst

The invention relates to a method for recovering tungsten trioxide and ammonium metavanadate from a selective catalytic reduction (SCR) denitration catalyst. The method comprises the following steps of: crushing the SCR denitration catalyst, sieving to obtain catalyst powder, mixing with sodium carbonate, and stirring fully and uniformly; putting the mixed powder into a sintering furnace, and sintering to obtain a sintered material; keeping temperature for 1 hour, and sieving to obtain sintered material powder; pouring warm water, so that Na2WO4 and NaVO3 in the sintered material powder are dissolved fully, filtering, and removing precipitates to obtain a mixed solution of Na2WO4 and NaVO3; regulating the pH value to be 6.5-7.5, adding an ammonium bicarbonate solution or an ammonium chloride solution, and precipitating ammonium metavanadate precipitate; filtering, washing by using a diluted ammonium bicarbonate solution for 2 to 3 times, washing by using 30 percent ethanol for 1 to 2 times, and drying to obtain an ammonium metavanadate finished product; and converting the Na2WO4 in the residual solution into ammonium paratungstate, evaporating the residual solution to obtain ammonium paratungstate crystals, and calcining to obtain the tungsten trioxide. By the method, the ammonium metavanadate and the tungsten trioxide can be recovered, and the discharge of pollutants is reduced.
Owner:江苏万德环保科技有限公司

SCR denitration catalyst and preparation method thereof

The invention relates to a preparation method of an SCR denitration catalyst, which comprises the following steps: (1) Al2O3 sol is prepared, which comprises the steps that hot ammonia, the Al2O3 is added in drops into the ammonia and then HCI is added and the mixture is stirred; (2) Al2O3-SiO2-TiO2 composite sol is prepared, which comprises the steps that tetratethoxy-silane, butyl titanate, deionized water are sequentially put into ethanol to be aging and then the sol prepared by step (1) is adding to be stirred and aging; (3) vector is coated, which comprises the steps that cordierite honeycomb immersed into the sol of step (2) and the raffinate in a channel is cleaned, dried and roasted after being taken out; (4) active component impregnating solution is prepared, which comprises the steps that lanthanum nitrate, ammonium metavanadate and ammonium paratungstate are dissolved into the deionized water after being mixed together and oxalate acid is added to be aging; (5) the active component is loaded, which comprises the steps that the vector of the step (3) is immersed into the impregnating solution of the step (4) and then the raffinate in the channel is cleaned to be dried and roasted. The invention also relates to the denitration catalyst which is prepared by the method.
Owner:山西蒲洲博奇环保科技有限公司

Recovery method for SCR waste flue gas denitration catalyst

The invention relates to a recovery method for an SCR waste flue gas denitration catalyst, and adopts a hydrometallurgy process. After the SCR waste flue gas denitration catalyst is smashed and subjected to pre-calcination treatment, a NaOH solution is added according to a ratio for dissolution. After the catalyst is dissolved, solid-liquid separation is performed, sulfuric acid is added into the obtained precipitation, and the precipitation is steeped, precipitated, hydrolyzed, subjected to salt treatment, and calcinated to obtain TiO2. Sulfuric acid is added into the solution obtained from the first solid-liquid separation to adjust the pH value, excess ammonium nitrate is added to precipitate vanadium, and second solid-liquid separation is performed. Ammonium metavanadate obtained from filtration is subjected to pre-calcination to obtain a V2O5 finished product. Hydrochloric acid is added into the solution obtained from the second solid-liquid separation to adjust the pH value, and NaCl is added to obtain sodium tungstate. The sodium tungstate is subjected to purification, filtration, ion exchange, and other processes to separate impurities, and subjected to evaporative crystallization to obtain a sodium tungstate finished product. The method provided by the invention is simple in technology, general in equipment, easily available in raw material, low in cost and high in recovery rate.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method of high-purity vanadium pentoxide

The invention discloses a preparation method of high-purity vanadium pentoxide. The preparation method comprises the following steps of: returning and dissolving coarse vanadium in aqueous alkali, and filtering the solution to remove metal impurities, which are subjected to precipitation reaction with the aqueous alkali, in the coarse vanadium, thus obtaining a primary returned solution; slowly pouring the primary returned solution into a sulfuric acid solution, adjusting the pH value of the solution to be 1.0-2.0 to obtain a liquid-solid mixture, and performing solid-liquid separation on the liquid-solid mixture; filtering and washing precipitates obtained from the solid-liquid separation of the mixture, and returning and dissolving the mixture into the aqueous alkali, thus obtaining a secondary returned solution; adding ammonium sulfate into the secondary returned solution for precipitating vanadium, and filtering the solution to obtain ammonium metavanadate; and processing the ammonium metavanadate to obtain the high-purity vanadium pentoxide. The preparation method adopting multiple stages of returned dissolving can be used for effectively removing the metal canon impurities of the vanadium pentoxide, and further obtaining the high-purity vanadium pentoxide with the metal canon impurity contents of less than 0.001% and the vanadium pentoxide content of 99.99%.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP

Method for preparing high-purity vanadium from heteropolyacid impurity in amine extraction mode

The invention relates to a method for preparing high-purity vanadium from heteropolyacid impurities in an amine extraction mode. Generally an ordinary vanadium solution is doped with impurities such as chromium, silicon, phosphorus, tungsten, molybdenum and arsenic, if acid is added into the solution, heteropolyacids such as phosphorus tungsten, phosphorus vanadium tungsten, silicon tungsten, phosphorus molybdenum tungsten, silicon molybdenum tungsten, molybdenum vanadium arsenic and tungsten arsenic can be formed, the impurities in the solution are removed by carrying out compounding synergic extraction on the heteropolyacids in the ordinary vanadium solution by using amines and a synergist so as to obtain a purified vanadium-containing raffinate, subsequently the vanadium-containing raffinate is evaporated and concentrated to be the concentration that each liter of the solution contains 40g vanadium, ammonium salt is further added into the concentrated liquid to obtain ammonium metavanadate solid, vanadium pentoxide with the purity greater than 99.9% is obtained through washing in pure water, drying and calcining in an oxygen atmosphere, the organic phase after the heteropolyacid is extracted is subjected to reverse extraction by using an alkali solution so as to form a heteropolyacid water phase, and the organic phase is recycled and circulated. The method has low requirement on equipment, and is simple to operate, key extraction agents are good in thermal stability and not sensitive in acid and alkali, and a recycling and circulating method is simple and easy to be industrialized.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Method for regeneration and resource utilization of waste honeycombed denitrification catalyst

The invention discloses a method for regeneration and resource utilization of a waste honeycombed denitrification catalyst. The method comprises the following steps of: crushing, grinding and sieving the waste catalyst; loading a mixture of the powdered catalyst and sodium carbonate into a sintering furnace to produce Na2WO4 and NaVO3, dissolving completely, adjusting the pH value to separate ammonium metavanadate precipitates, filtering, applying the remaining liquid to ammonium paratungstate extraction, washing the precipitates and oven-drying to obtain ammonium metavanadate, and making ammonium paratungstate crystals and tungsten trioxide. The regeneration method of the SCR catalyst comprises the following steps of: performing water-washing, pickling, activation and drying on the catalyst. The method for producing titanium pigment from the waste catalyst as raw material comprises the following steps of: performing pulverization, acidolysis and extraction on the waste catalyst, performing plate-frame pressure filtration; performing concentration, hydrolysis and suction-filtration on the catalyst, washing and blanching with sand leaching water, calcining, grinding and packaging. The method disclosed by the invention can effectively restore the activity of a deactivated catalyst and prolong the service life of the deactivated catalyst, which not only reduce the operating cost of a thermal power plant but also save the valuable rare earth resources.
Owner:YIXING YIGANG ENVIRONMENTAL PROTECTION ENG & MATERIALS

Method for extracting vanadic anhydride from stone coal vanadium ore

The invention relates to a method for extracting V2O5 from stone coal vanadium ores, which is characterized in that the stone coal vanadium ores are grinded, subjected to high-temperature roasting, and directly leached out by a dilute sulfuric acid; slag is washed and filtered by water; and a leached solution is extracted by extract containing an N235 extractant, and subjected to back-extraction, ammonium metavanadate precipitation, filtration, washing, deamination and roasting to obtain the V2O5. The method greatly reduces pollution of waste gas and waste water. Compared with the prior salt roasting (sodium modification) technology, the technology has a reasonable design structure, high comprehensive utilization rate of resources, proper material consumption, strong controlled ability of the process, high product quality and high automation degree of the technological flow, and is convenient for large-scale industrial production. The technology does not have exact demands on the raw ores and has good adaptability. The overall yield of the technology is high, reaches more than 85 percent, is on the advanced level in China currently, and is improved by approximately 25 percent compared with the overall yield of sodium modification roasting technology of other vanadium smelting plants in Hunan province.
Owner:CNMC NINGXIA ORIENT GRP

Method for recycling vanadium and molybdenum from waste petroleum catalyst

The invention relates to a method for recycling vanadium and molybdenum from a waste petroleum catalyst, and belongs to the technical field of petrochemical industry. The method comprises air-burning and ball-removing, ball-milling, soda roasting-water leaching, aluminum removing, molybdenum precipitating and enriching molybdenum by ion exchange. The method specifically comprises the following steps: firstly, igniting sticky oil in the waste catalyst in air to burn carbon and oils in the waste catalyst; then, oxidizing the vanadium and nickel in the forms of porphyrin compounds in the waste catalyst into vanadium oxide and nickel oxide, converting most of the molybdenum into molybdenum oxide, wherein the waste catalyst subjected to air-burning and oil-removing is more beneficial for crushing, and the crushed waste catalyst and a certain proportion of sodium carbonate are mixed, and are roasted at a high temperature; leaching roasted materials by hot water, dissolving sodium salts of the vanadium and the molybdenum into water to obtain a solution, filtering the solution, introducing the filtered solution into a leaching solution, introducing a little aluminum into the leaching solution, regulating the pH value of the solution to remove aluminum; regulating the pH value of the solution to 8-9, adding ammonium chloride, precipitating and separating out the vanadium in the form of ammonium vanadate; and concentrating vanadium-precipitated solution by adopting an ion exchange process and enriching an ammonium molybdate solution.
Owner:刘楚玲

Preparation method of rare-earth-based composite multi-component denitrification and dioxin removal catalyst

ActiveCN104226301AImprove catalytic oxidation abilityImprove surface acidity and alkalinityDispersed particle separationMetal/metal-oxides/metal-hydroxide catalystsPolymerDenitrification
The invention discloses a preparation method of a rare-earth-based composite multi-component denitrification and dioxin removal catalyst. According to the preparation method, titanium dioxide (titanium white) and silicon powder as carriers and ammonium metatungstate, ammonium metavanadate, cerous nitrate and lanthanum nitrate as active components, the steps of mixing, kneading, molding, drying and roasting are carried out in the presence of auxiliary materials to prepare the catalyst, wherein the auxiliary materials include monoethanolamine, citric acid, ammonium hydroxide, lactic acid, stearic acid, glass fibers, macromolecular polymer fibers RP-CHOP, hydroxypropyl methyl cellulose, polyoxyethylene and water. The prepared catalyst can simultaneously decompose nitric oxides and dioxin and can improve the mercury removal efficiency of the existing smoke control device. The prepared catalyst is not only applicable to new power plants, but also suitable for the modification of a wet-method desulphurization device of an old power plant, 80 to 95 percent of HgO generated in a coal burning power plant can be oxidized to Hg<2+> by utilizing the prepared catalyst, and a majority of particle-state Hg<2+> can be removed by utilizing a dust removal device.
Owner:山东信义汽车配件制造有限公司

Multifunctional raw gas purifying agent, preparation method and application method thereof

The invention relates to a multifunctional raw gas purifying agent, a preparation method and an application method thereof. According to the present invention, active alumina is adopted as a carrier, and the carrier loads ammonium molybdate, one or two materials selected from copper acetate, zinc acetate, lead acetate, nickel oxalate and ammonium metavanadate, and one material selected from magnesium chloride, potassium carbonate and sodium carbonate to prepare the multifunctional raw gas purifying agent, wherein the mass of the loaded ammonium molybdate is 1-10% of the mass of the carrier, the total mass of the other two or three loaded metal compounds is 10-25% of the mass of the carrier. The preparation method for the multifunctional raw gas purifying agent comprises: impregnating the carrier for 2-6 hours by the metal compound solution; drying for 2-4 hours at a temperature of 120 DEG C; carrying out baking for 4-6 hours at the temperature of 280-350 DEG C to prepare the multifunctional raw gas purifying agent. The multifunctional raw gas purifying agent of the present invention is adopted in the raw gases of water gas, semi-water gas, coke oven gas or IGCC power generation fuel gas to purify COS, CS2, HCN, SO2, SO3 O2 and other impurities, wherein the conversion rates of the COS, the CS2, the HCN, the SO2 and the SO3 are more than or equal to 90%, and the O2 removal rate is more than or equal to 95%.
Owner:HAISO TECH

Method for preparing BiVO4 film with photocatalysis performance by using sol-gel method

The invention discloses a method for preparing a BiVO4 film with photocatalysis performance by using a sol-gel method. The method comprises the following steps of: respectively preparing a precursor solution A and a precursor solution B by taking bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and ammonium metavanadate (NH4VO3) as raw materials and taking citric acid as a solvent, preparing BiVO4 sol by mixing the precursor solution A with the precursor solution B; and coating the BiVO4 sol to a treated FTO (Fluorine-doped Tin Oxide) glass substrate surface in a spinning manner by adopting a spin coating method so as to form a film, and carrying out pre-annealing and annealing treatment on the film formed after spin coating, thereby obtaining the BiVO4 film fixed on the FTO glass substrate surface. According to the method for preparing the BiVO4 film with the photocatalysis performance by using the sol-gel method, the pure-monoclinic-phase BiVO4 film is prepared by combing the sol-gel method with the spin coating method, the prepared BiVO4 film has certain photocatalysis activity under visible light irradiation, meanwhile, the problem of immobilization of a BiVO4 photocatalyst is solved, and then, the separation, recovery and reuse of the BiVO4 photocatalyst are realized.
Owner:盐城市鹤业实业投资有限公司

Method for preparing flue gas SCR (Selective Catalytic Reduction) denitration catalyst

The invention relates to a method for preparing a flue gas SCR (Selective Catalytic Reduction) denitration catalyst. The method comprises the following steps of: mixing ammonium metavanadate, oxalic acid, manganese salt and water for preparing a mixture solution, adding titanium dioxide powder into the mixture solution, heating in water bath and stirring, and obtaining mixed sol by standing at room temperature; putting the mixed sol into a microwave oven, heating and drying by utilizing microwave radiation; and putting dried solid into a muffle furnace for burning. According to the method disclosed by the invention, a temperature window of the SCR catalyst can be broadened to a low-temperature direction, the problems of low denitration efficiency at low temperature and narrow temperature window of a commercial catalyst are solved; compared with the traditional drying method, the microwave radiation heating and drying method has the advantages that low-temperature SCR denitration activity of the composite catalyst can be increased to a large extend, when the activity temperature is up to 250 DEG C, the denitration efficiency of the catalyst prepared by the traditional drying method is up to 51.9%, and the denitration efficiency of the catalyst can be increased by 31.7 percentage points and can be up to 83.6% by the microwave radiation heating and drying method.
Owner:SHANDONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products