Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2291 results about "Molybdenum oxide" patented technology

About Molybdenum(IV) Oxide. Molybdenum(IV) Oxide or Molybdenum Dioxide is a highly insoluble thermally stable Molybdenum source suitable for glass, optic and ceramic applications. Molybdenum oxide is a yellow or light blue solid, it is the most produced molybdenum compound, created by roasting molybdenum disulfide, the chief molybdenum ore.

Pyrolysis gasoline nickel system selective hydrogenation catalyst and preparation method thereof

The invention provides a pyrolysis gasoline nickel system selective hydrogenation catalyst and a preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst and belongs to a catalyst containing metal or metal oxide or hydroxide. The pyrolysis gasoline nickel system selective hydrogenation catalyst is characterized by being provided with a mesopore-macropore or double-mesopore compound pore channel, taking aluminum oxide as a carrier, taking nickel as a main active component, taking molybdenum as an auxiliary active component and taking the metal oxide as an auxiliary agent; the pyrolysis gasoline nickel system selective hydrogenation catalyst is composed of following components in parts by weight: 15-19 parts of nickel oxide, 6.5-20 parts of molybdenum oxide, 2.2-4.5 parts of the auxiliary agent and the balance of the aluminum oxide; the auxiliary agent is one or the combination of more than two of potassium oxide, magnesium oxide and lanthanum oxide. The invention provides the pyrolysis gasoline nickel system selective hydrogenation catalyst which is large in pore capacity and high in specific surface, has good reaction activity, high hydrogenation reaction selectivity, good stability, good arsenic dissolving and glue resisting capabilities and is provided with the compound pore channel, and the preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst. When the catalyst is used for selectively hydrogenating full-fraction pyrolysis gasoline, the average diene hydrogenation rate is 99%.
Owner:CHINA PETROLEUM & CHEM CORP

Method for producing strong annealed steel hot-rolled sheet coil

The invention discloses a method of manufacturing a tough steel hot rolled strip coil. The molten steel, waste steel, chromic oxide and molybdenum oxide are mixed into a rotating furnace, and a fluxing medium is added in; the manganese oxide or manganese ore is added in at the earlier stage of blowing; the manganese oxide or manganese ore and the reducing agent are added in by the end of blowing, and nitrogen or argon is blew from bottom during the whole process; tapping is conducted when the components and the temperature of the molten steel are appropriate; during tapping, the composite deoxygener and the reducing desulfurating refining slag are added in the molten steel during tapping, and nitrogen or argon is blew from bottom of a steel ladle during the whole process. The steel ladle adds the metal aluminum in the molten steel from the CAS position to conduct deep deoxidation and microalloying; and then the increasing nitrogen agent, vanadium iron and ferrocolumbium are added in, and nitrogen or argon blowing is kept. The steel ladle is sent to the position of an LF refining furnace, the lime and reducing desulfurating refining slag are added in the LF refining furnace, argon is blew, electricity is supplied, the temperature is raised and argon is blew again, and the calcium line and the boron filament are fed at the later stage of refining; CSP is supplied for continuous casting, and the charging temperature of a cast slab is is more than 950DEG C; the heating temperature, the initial billet temperature, the rolling finishing temperature and the coiling temperature are well controlled. The tough steel hot rolled strip coil manufactured with the method has high strength and good tenacity.
Owner:湖南华菱涟钢特种新材料有限公司 +1

Method for recycling vanadium and molybdenum from waste petroleum catalyst

The invention relates to a method for recycling vanadium and molybdenum from a waste petroleum catalyst, and belongs to the technical field of petrochemical industry. The method comprises air-burning and ball-removing, ball-milling, soda roasting-water leaching, aluminum removing, molybdenum precipitating and enriching molybdenum by ion exchange. The method specifically comprises the following steps: firstly, igniting sticky oil in the waste catalyst in air to burn carbon and oils in the waste catalyst; then, oxidizing the vanadium and nickel in the forms of porphyrin compounds in the waste catalyst into vanadium oxide and nickel oxide, converting most of the molybdenum into molybdenum oxide, wherein the waste catalyst subjected to air-burning and oil-removing is more beneficial for crushing, and the crushed waste catalyst and a certain proportion of sodium carbonate are mixed, and are roasted at a high temperature; leaching roasted materials by hot water, dissolving sodium salts of the vanadium and the molybdenum into water to obtain a solution, filtering the solution, introducing the filtered solution into a leaching solution, introducing a little aluminum into the leaching solution, regulating the pH value of the solution to remove aluminum; regulating the pH value of the solution to 8-9, adding ammonium chloride, precipitating and separating out the vanadium in the form of ammonium vanadate; and concentrating vanadium-precipitated solution by adopting an ion exchange process and enriching an ammonium molybdate solution.
Owner:刘楚玲
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products