Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

11735 results about "Precious metal" patented technology

A precious metal is a rare, naturally occurring metallic chemical element of high economic value. Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial commodities. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

Electroless deposition apparatus

An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a “patch” of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer. In one embodiment, the conductive material is deposited over the catalytic layer by electroless deposition. In another embodiment, the conductive material is deposited over the catalytic layer by electroless deposition followed by electroplating or followed by chemical vapor deposition. In still another embodiment, the conductive material is deposited over the catalytic layer by electroplating or by chemical vapor deposition.
Owner:APPLIED MATERIALS INC

High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis

The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2 / g to about 250 m2 / g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 Å to about 200 Å. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.The high surface area transition metal-based catalysts of the present invention are prepared in a non-acidic solution at a pH greater than about 7.0 , and starting with a non-acidic transition metal complex. The resulting product is a catalyst with a uniform distribution of metal throughout the catalyst particles, with a smooth and homogeneous surface morphology, and with slow crystallite growth upon heating.
Owner:CLARIANT INT LTD

Nuclear shell nanometer catalyst packaged with noble metal nanometer grains and method thereof

The invention relates to a nuclear shell nanometer catalyst packaged with noble metal nanometer grains and a method thereof, which relate to a nanometer catalyzing material. The invention provides a nuclear shell nanometer catalyst packaged with noble metal nanometer grains, which has a size of the noble metal grains less than 10nm, and higher contact level among noble metal grains and stability of the catalyst, can be reused and is adaptive to different using conditions by multi-level derivation, and also provides a preparation method thereof. The catalyst has a formula of NMP@X, NMP is nanometer grains such as Pd, AgPd or Au, and the like, and X is spherical SiO2, hollow SnO2 ball or hollow C ball. The method comprises the following steps: synthesizing noble metal nanometer grains and adorning the surface to obtain noble metal-iron oxide nanometer heterojunction; coating a silicon dioxide to obtain noble metal iron heterojunction oxide @ silicon dioxide nuclear shell nanometer material, growing porous pores on the surface, removing the silicon dioxide, and removing iron oxide on the noble metal nanometer grains so that the noble metal nanometer grains are located in a nanometer capsule of the hollow porous pores to obtain the product.
Owner:XIAMEN UNIV

Preparation method of catalyst with core-shell structure for low-temperature fuel cell

The invention discloses a preparation method of a catalyst with a core-shell structure for a low-temperature fuel cell, belonging to the technical field of fuel cells. In the catalyst with the core-shell structure prepared with the preparation method, platinum is taken as a shell, a metal alloy consisting of more than one of metals including ruthenium, platinum, iron, cobalt, nickel, copper, tin, iridium, gold and silver is taken as an inner core, and the shell and the inner core are loaded on a carbon carrier. The preparation method comprises the following preparation steps of: reducing a metal chloride or a metal nitrate with a reducing agent, and forming a core on the carbon carrier with a large specific surface area; stabilizing the core; and precipitating Pt on a core layer with a impregnation reduction method, a high-pressure organic sol method, a microwave method or an electrodeposition process to form the catalyst with the core-shell structure. Due to the adoption of the preparation method, the utilization ratio of noble metal platinum is increased, the cost of an electro-catalyst is reduced effectively, and the methanol oxidizing capability and oxygen reducing activity of the obtained catalyst are increased by 10.8 times and 8.7 times in maximum respectively in comparison to the mass ratio and activity of a commercial JM4100Pt/C catalyst.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products