Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2270 results about "Palladium catalyst" patented technology

Method of purifying aromatic dicarboxylic acids

An aromatic dicarboxylic acid is purified by oxidizing m-xylene or p-xylene to produce crude isophthalic acid or crude terephthalic acid, respectively. The products of the oxidizing step are hydrogenated in the presence of a palladium catalyst. Carbon monoxide is introduced during the hydrogenation step. The palladium catalyst is provided on a carbon substrate. The products of the oxidizing step are dissolved in a solvent, which may be water, prior to the hydrogenation step. The products of the oxidizing step may be dissolved at an elevated temperature, above the normal boiling point of the solvent. The oxidation step produces isophthalic acid, 3-carboxybenzaldehyde and fluorenones in the case of oxidizing m-xylene and produces terephthalic acid, 4-carboxybenzaldehyde and fluorenones in the case of oxidizing p-xylene. It may be helpful to monitor the disappearance of 3-carboxybenzaldehyde in the case of oxidizing m-xylene and 4-carboxybenzaldehyde in the case of oxidizing pxylene, and reducing the amount of carbon monoxide when the rate of disappearance is below a predetermined minimum. After the hydrogenation step, the isophthalic acid or terephthalic acid may be crystallized. The carbon monoxide may be maintained at a concentration of 100 to 500 ppm based on added hydrogen and carbon monoxide. Other aromatic dicarboxylic acids may also purified by this procedure.
Owner:GRUPO PETROTEMEX DE C V

Graphene oxide supported Schiff base palladium catalyst as well as preparation method and application thereof

The invention relates to a graphene oxide supported Schiff base palladium catalyst as well as a preparation method and application thereof. A catalyst carrier is a graphene oxide prepared by an improved Hummers process, ligand is Schiff base and an active ingredient is palladium salt; the capacity of the palladium in the active ingredient palladium salt is 5.0%-10.0% of the total mass of the catalyst, the diameter of the graphene oxide is 1 mu m-5 mu m, the thickness of the graphene oxide is 0.8 nm-1.2 nm, and the particle diameter of a palladium nano particle is 3 nm-8 nm. The graphene oxide-supported Schiff base palladium catalyst can be used for preventing the palladium from losing in a catalysis process, meanwhile, the graphene oxide has a unique two-dimensional planar structure and can also be used for improving dispersing performance of the palladium nano particle on the surface of the graphene oxide to prevent the palladium from gathering in the catalysis process, so that the catalytic activity of the supported type catalyst is improved. Therefore, the graphene oxide-supported Schiff base palladium catalyst disclosed by the invention can be used for preventing the palladium from gathering and losing better in a catalytic C-C (Carbon-Carbon) coupling reaction process, and has higher catalytic activity and better recycling performance.
Owner:EAST CHINA UNIV OF TECH

Method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene

A method for preparing diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene relates to a preparation technology of the diaminonaphthalene, which comprises the following steps: adding a palladium catalyst comprising active components and a carrier and adding the dinitronaphthalene and solvent to a stainless steel high-pressure reactor with an agitator, closing the reactor, replacing air in the reactor with nitrogen for at least three times and then replacing the nitrogen in the reactor with hydrogen for at least three times, and then filling the hydrogen in the reactor so that the reaction pressure in the reactor reaches 0.4-4.0MPa, heating the reactor so that the reaction temperature reaches 30-150 DEG C so as to carry out catalytic hydrogenation to prepare the diaminonaphthalene. The method adopts the hydrogenation reaction technology in the stainless steel high-pressure reactor with the agitator; a catalyst carrier is pretreated to improve the activity of the catalyst and reduce the consumption of the catalyst. By optimizing the technological conditions, the rate of conversion from the dinitronaphthalene to the diaminonaphthalene is effectively improved and high selectivity of the product diaminonaphthalene is maintained.
Owner:JIANGSU POLYTECHNIC UNIVERSITY +1

Method for selective hydrogenation of reforming generated oil

The invention relates to a method for selective hydrogenation of reforming generated oil. According to the reforming generated oil, the bromine index is 7270mgBr/100g oil, and the weight of arene is 66.83%; the reaction conditions are as follows: the reaction temperature is 170 DEG C, the hydrogen partial pressure is 1.6MPa, the speed of liquid is 4h<-1> and the volume ratio between hydrogen and oil is 200. The method is characterized in that the used catalyst is Pd/gamma-Al2O3 containing 0.3wt% of palladium, and is passivated by a dry method with sulfur-containing compounds such as dimethyl disulfide, methyl thioether, butyl mercaptan or hydrogen sulfide before being filled; the added amount of the sulfide for passivation is as follows: the molar ratio of the palladium and the sulfur is 1-3.5; and the passivation temperature ranges from normal temperature to 230 DEG C. The method has the advantages that the pollution can be reduced, the investment can be reduced, convenience is brought for starting operation; after the palladium catalyst is passivated by the sulfide, the loss of arene of a hydrorefined product is lower than 0.5% (weight); after short-time reaction, the bromine index of the product is lower than 100 and the requirement of arene extraction for the raw materials can be met.
Owner:PETROCHINA CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products