Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1055results about How to "Uniform pore size distribution" patented technology

Preparation method of hollow flat plate structure type ceramic filter membrane element

The invention provides a preparation method of a hollow flat plate structure type ceramic filter membrane element. The method comprises the following steps: (1) preparing a hollow structure type ceramic membrane supporting body by using an extrusion molding method, namely sintering aluminum hydroxide obtained by calcination at 600 DEG C as a main raw material to prepare the ceramic membrane supporting body; (2) preparing the ceramic filter membrane by using a plasma spray method. When the ceramic membrane supporting body is prepared, the selected and used raw material is calcined aluminum hydroxide, so that the sintering temperature of the ceramic membrane supporting body can be greatly reduced, and the sufficient strength of the supporting body can be guaranteed; when the ceramic filter membrane layer is prepared, the thickness of the filter membrane can be excellently controlled by using the plasma spray process, and the filter resistance is reduced; the membrane layer has the uniform pore size distribution and the high separation accuracy; the membrane layer is closely combined with the supporting body. The ceramic filter membrane is prepared by using plasma spraying without sintering, so that the process is simple, the production cost of the ceramic filter membrane can be effectively reduced, the production efficiency is improved, and the process can be widely applied to the fields of sewage treatment and filtration, solid-liquid chemical separation, and the like.
Owner:雅安沃克林环保科技有限公司

Multiple layer composite micropore filtration separation material and preparation method and use thereof

The invention relates to a multi-layer composite micropore filter separation material, a method for preparing the material and the application thereof, wherein, the preparation method comprises the following steps: (1) the fiber which can be fibrillated is prepared into fully fibrillated fiber material by pulping process; (2) the slurry is obtained after the fully fibrillated fiber material is dispersed in water; (3) advancing to the net and shaping are carried out, a layer of nonwoven fabric is placed on a shaping net, the above slurry is dehydrated on the nonwoven fabric directly for compound molding; (4) drying is carried out for obtaining the product. The product can also be processed by hot press molding. The method can be operated easily, is applicable for application of large scale, the obtained multi-layer composite high temperature resistance micropore filter separation material has the outstanding performance of high temperature resistance, meanwhile the uniformity of the holes is excellent, the average aperture can reach 10nm-1mum, and the method can be used in such fields as preparing filter material, battery septum material, electrolytic capacitor paper and double electric layers capacitor septum, etc.
Owner:ZHUZHOU TIMES FIBER PIONEER MATERIAL TECH CO LTD

Mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy as well as preparation method and application thereof

The invention discloses a mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy and a preparation method thereof. The method comprises the following steps: calcinating at a controlled temperature of 350-600 DEG C in air so as to obtain a mesoporous silica molecular sieve KIT-6 loaded with tungsten trioxide by taking mesoporous silica molecular sieve KIT-6 as a hard template and a silicotungstic acid or phosphotungstic acid hydrate as a tungsten trioxide precursor; then calcinating at a controlled temperature of 450-550 DEG C so as to obtain a mesoporous silica molecular sieve KIT-6 provided with oxygen vacancy and loaded with tungsten trioxide by utilizing H2 as a reducing agent; and finally, removing the mesoporous silica molecular sieve KIT-6 by use of a 10wt% HF aqueous solution, thereby obtaining the mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy and relatively large specific surface area and pore diameter. The mesoporous WO[3-x] visible-light-driven photocatalyst with oxygen vacancy is capable of effectively utilizing lights to rapidly catalyze CO2 so as to generate methane, and is high in catalysis efficiency, simple in preparation process and needed equipment, environmentally friendly in preparation process and free from pollution.
Owner:SHANGHAI INST OF TECH

Preparation method of high-purity collagen protein sponge

The invention provides a preparation method of high-purity collagen protein sponge, and relates to a preparation method of collagen protein sponge. The preparation method of the high-purity collagen protein sponge is used for solving the problems that the collagen protein sponge prepared by using a conventional method is long in production cycle and low in yield and purity and has poor hemostasis performance. The preparation method of the high-purity collagen protein sponge comprises the following steps: step one. pretreating fresh bovine heel tendons; step two. extracting collagen protein; step three. centrifuging; step four. salting out; step five. dissolving; step six. carrying out gradient dialysis; step seven. pre-freezing; step eight. carrying out freeze drying; and step nine. sterilizing. The final product prepared by using the method has a smooth and flat surface and relatively good hemostatic performance and is uniform in pore size distribution. The product has relatively high purity (the total amount of amino acids reaches 97.73%), an obvious hemostatic effect and no abnormal taste, is safe, non-toxic, high in yield and short in time; liquid is clear without impurities; the production cycle is shortened; the whole preparation process is carried out at a room temperature; the biological activity of the collagen protein is maintained; and the application of the high-purity collagen protein sponge in clinical is improved.
Owner:HARBIN INST OF TECH

Preparation method of high nitrogen content-doped porous carbon with high specific surface area

The invention discloses a preparation method of high nitrogen content-doped porous carbon with a high specific surface area. The preparation method comprises the following steps: drying and smashing a biomass raw material to obtain particles and carbonizing the particles in a nitrogen atmosphere at a high temperature to obtain carbide; then, dispersing the carbide in a potassium hydroxide solution, and stirring and drying to obtain an alkali and carbon mixture; activating the alkali and carbon mixture at the high temperature in the nitrogen atmosphere, and washing, filtering and drying to obtain the porous carbon material; uniformly dispersing the porous carbon material in a strong acid solution for oxidation treatment, and filtering, washing and drying to obtain an oxidized porous carbon material; and finally, ammonifying the oxidized porous carbon material at the high temperature in an ammonia atmosphere to obtain the high nitrogen content-doped porous carbon with the high specific surface area. The specific surface area of the doped porous carbon is 2500-3500<m2> / g, the pore diameter of the material is 0.5-6nm and the nitrogen content is 4-12%. The method disclosed by the invention is simple and effective, easy to operate, convenient for batch production on a large scale and suitable for application in industrial production.
Owner:TONGJI UNIV

Preparation method of S/TiO2 composite material for anode of sodium-sulfur battery

The invention provides a preparation method of an S/TiO2 composite material for an anode of a sodium-sulfur battery. The preparation method comprises the following steps: dissolving butyl titanate, a template agent and a hydrolysis inhibitor into absolute ethyl alcohol; adding a mixed solution of de-ionized water and the absolute ethyl alcohol to form semi-transparent sol; transferring the sol into a high-pressure reaction kettle to react; calcining a solid product in air to remove the template agent to obtain meso-porous titanium dioxide; dispersing the meso-porous titanium dioxide into a sodium thiosulfate solution dissolved with a surfactant; adding hydrochloric acid to react; washing the solid product by a lot of the de-ionized water and drying; and eating under the protection of an inert atmosphere to obtain the S/TiO2 composite material. The meso-porous titanium dioxide prepared by the preparation method is large in specific surface area, high in porosity and strong in adsorption capability; the electrical conductivity of sulfur can be improved and a lot of nano sulfur and polysulfide can be contained; the polysulfide can be effectively prevented from being dissolved and diffused in electrolyte, and the utilization rate of the sulfur is improved; meanwhile, the structure of the meso-porous titanium dioxide is stable and a pore channel cannot be easily damaged, so as to have buffering effects on volume expansion and retraction in a charging/discharging process of a sulfur electrode.
Owner:CENT SOUTH UNIV

Method for preparing pore diameter controllable through hole anodized aluminum oxide film

The invention relates to technology for preparing an anodized aluminum oxide film, in particular to a method for preparing a pore diameter controllable through hole anodized aluminum oxide film. The method comprises the following steps of: performing anode electrolysis treatment on an anodized aluminum oxide film with an aluminum substrate in mixed solution of perchloric acid and acetone to obtain a pore diameter controllable anodized aluminum oxide film with two open ends in short time (2-300 seconds), wherein the pore diameters at the top end and the bottom end fo the anodized aluminum oxide film are accurately controllable in ranges of between 10 and 100nm and between 5 and 25nm; and putting the aluminum oxide film with the aluminum substrate subjected to stage depressurization-method oxidation into acetone solution of perchloric acid, and applying voltage 5-15V higher than film forming voltage for anode electrolysis treatment to obtain the pore diameter controllable through hole anodized aluminum oxide film. In the method, the pore diameters at the top end and the bottom end of the anodized aluminum oxide film can be respectively controlled, holing and removal of the aluminum substrate are completed by one step, and a plurality of problems of complicated process, time consumption, difficult control of pore diameters and the like in the conventional process for preparing the through hole anodized aluminum oxide film.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Method for preparing silicon-aluminum aerogel by using fly ash as raw material through normal pressure drying

The invention discloses a method for preparing silicon-aluminum aerogel by using fly ash as a raw material through normal pressure drying, which comprises the following steps of: mixing, grinding and calcining the fly ash and sodium carbonate to enable acidic oxides and amphoteric oxides in the fly ash to react with the sodium carbonate, then dissolving a sintered material with hydrochloric acid, and carrying out suction filtration to obtain a filtrate, i.e. silicon-aluminum sol; settling and aging the silicon-aluminum sol to form silicon-aluminum gel; soaking with circulating water to remove chloride ions; soaking with an ethanol solvent instead of water; soaking with an organosilicon compound as a surface hydrophobic agent for surface hydrophobic treatment; and preparing the silicon-aluminum aerogel through normal pressure drying. The invention uses the industrial waste fly ash as the raw material to replace an organosilicon source with high price and a certain toxicity, and uses normal pressure drying to replace supercritical drying, so the safety performance is greatly enhanced, the production cost is greatly lowered; and the method has simple process and convenient operation and is suitable for large-scale production. The prepared silicon-aluminum aerogel can be widely applied to the fields of heat insulating materials and the like.
Owner:SOUTHWEAT UNIV OF SCI & TECH

Method for preparing ceramic particle reinforced foamed aluminum-matrix composite material

The invention relates to a method for preparing a ceramic particle reinforced foamed aluminum-matrix composite material, which relates to a method for preparing a foamed aluminum-matrix composite material. The method solves the problems of high production cost and nonuniform pore distribution of the obtained foamed aluminum-matrix composite material due to a foaming agent TiH2 adopted in a conventional melt-foaming method which is expensive, needs pretreatment and has a difficultly controlled decomposition rate. The method comprises the following steps of: mixing aluminum alloy powder, ceramic particles and calcium carbonate (CaCO3) powder and placing a mixture into a graphite mould; placing the graphite mould into a vacuum hotpressing sintering furnace to prepare a prefabricated body; and performing forward extrusion, heating and foaming on the prefabricated body to obtain the ceramic particle reinforced foamed aluminum-matrix composite material. By using a powder metallurgic method and taking the CaCO3 powder as a foaming agent, the method has the advantages of low price, no pretreatment, simple process, stable decomposition rate, convenience for industrial production and uniform pore distribution of the obtained composite material which has a pore diameter of 0.5 to 2 mm, a porosity of 40 to 82 percent and a compressive yield strength of 36 to 70 MPa.
Owner:HARBIN INST OF TECH

Method for preparing hydrophobic SiO2 aerogel by virtue of normal pressure drying

The invention belongs to the field of aerogel material preparation technologies, and relates to a method for preparing a hydrophobic SiO2 aerogel by virtue of normal pressure drying. During the preparation, a two-step method is adopted, an organic silicon source as precursor, water as a hydrolysis agent, absolute ethyl alcohol as a solvent, acid and alkali as catalysts, and an organic silicon solution and a surface modifier. The preparation method comprises the following steps: mixing and stirring the organic silicon source, the water and the absolute ethyl alcohol in proportion, and respectively adding an acid catalyst and an alkaline catalyst by virtue of an acid and alkali two-step method to regulate pH value so as to form gel; performing solvent replacement on the aged gel, carrying out surface hydrophobic modification, replacing a hydrophilic group on the surface of the gel through a hydrophobic group, so that the gel is hydrophobic; finally, performing normal pressure drying to obtain the hydrophobic SiO2 aerogel. The method disclosed by the invention can be used for reducing the preparation cost of the aerogel; moreover, according to a hydrophobicity test, the contact angle can reach about 158 degrees, thereby showing that the hydrophobicity is good.
Owner:NANJING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products