Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1444 results about "Graphene quantum dot" patented technology

Graphene quantum dots (GQDs) are graphene nanoparticles with a size less than 100 nm. Due to their exceptional properties such as low toxicity, stable photoluminescence, chemical stability and pronounced quantum confinement effect, GQDs are considered as a novel material for biological, opto-electronics, energy and environmental applications.

Method for preparing fluorescent graphene quantum dots by solvothermal method

The invention belongs to the technical field of the preparation of graphene quantum dots (GQDs), and particularly relates to a method for preparing fluorescent graphene quantum dots with controllable oxidation degree and fluorescence by a solvothermal method. According to the technical scheme, the method comprises the following steps of: 1, preparing graphene oxide; 2, preparing green fluorescent graphene quantum dots by a single-step method starting from the graphene oxide; and 3, preparing the fluorescent graphene quantum dots with the controllable oxidation degree by a column chromatographic separation method. According to the method, the sizes and surface oxidation degree of the graphene quantum dots can be controlled under the synthetic condition, so that the fluorescent properties and surface chemical characteristics of the graphene quantum dots are controlled. The prepared graphene quantum dots are high in chemical stability and biocompatibility, low in biotoxicity, and high in property of applicable upconversion fluorescence, matt and the like and bleaching performance. By the excellent properties, the graphene quantum dots have a wide application range in aspects of biological imaging, photovoltaic devices and sensors, and are novel promising fluorescent nano materials.
Owner:JILIN UNIV

Method for preparing grapheme-quantum dot composite film and solar battery structured by using same

The invention relates to a method for preparing a grapheme-quantum dot composite film and a solar battery structured by using the same. The method comprises the following steps of: performing suction filtering on a suspension of grapheme-quantum dot composite powder on a filtering film to obtain a film; and then dissolving the filtering film away with an organic solvent, and transferring the filmto a conductive substrate. The method is characterized in that the ratio of the quantum dot to the grapheme and the thickness of the film can be controlled effectively; in addition, since the film isprepared at normal temperature, the requirement on the conductive substrate is reduced greatly. The prepared film can be used for structuring a novel quantum dot sensitized solar battery. The structured solar battery is of a layer structure, consists of the grapheme-quantum dot film on the conductive substrate, an electrolyte layer and a counter electrode and has the advantages of low cost, simpleness in preparation process, low temperature and stable performance. By the use of the grapheme-quantum dot composite film prepared by the method provided by the invention, the photoelectron transmission performance can be improved, and the photoelectric conversion efficiency of a battery can be enhanced.
Owner:SHANGHAI INST OF CERAMIC CHEM & TECH CHINESE ACAD OF SCI

High-efficiency quantum dot light emitting diode with self-assembly polymer hole transmission layer structure

The invention discloses and proposes a high-efficiency quantum dot light emitting diode with a self-assembly polymer hole transmission layer structure. Except a positive electrode and a negative electrode, the high-efficiency quantum dot light emitting diode comprises a three-layer structure: a hole transmission layer, a quantum dot light emitting layer and an electron transmission layer, wherein one end of the quantum dot light emitting layer is connected with the hole transmission layer, the other end of the quantum dot light emitting layer is connected with the electron transmission layer, the electron transmission layer is organic nanoparticles after doped, the hole transmission layer is formed by doping a monomer, a polymer, small-molecule, inorganic oxidized metal nanoparticles or a two-dimensional nanometer material into poly(3,4- ethylenedioxythiophene monomer), a quantum dot is quantum dots of zinc sulfide, zinc selenide, cadmium sulfide, cadmium selenide, cadmium telluride, mercury sulfide, mercury selenide, mercury telluride or core-shell nanometer structured cadmium selenide-zinc sulfide, cadmium sulfide-zinc sulfide, cadmium sulfide-zinc selenide and graphene thereof and the like, and the negative electrode is glass or polyethylene terephthalate (PET) with a layer of indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) or graphene.
Owner:SOUTHEAST UNIV

Electrochemical biosensor modified by graphene quantum dot and preparation method thereof

The invention relates to an electrochemical biosensor modified by graphene quantum dots and a preparation method thereof. The electrochemical biosensor is a three-electrode system sensor; in a three-electrode, the counter electrode is a platinum electrode, a reference electrode is a saturated calomel electrode, and a working electrode is a glassy carbon electrode the surface of which is coated with 1-4 layers of the graphene quantum dots. The electrochemical biosensor modified by the graphene quantum dots can successfully recognize an objective single-stranded DNA with the lowest concentration of 50nm; in case of the objective single-stranded DNA, equivalent and complementary single-stranded DNA and the objective single-stranded DNA form a double-stranded DNA; an electrochemical signal and the complementary single-stranded DNA have obvious differences so as to make effects on rapidly detecting the objective single-stranded DNA; and the single-stranded DNA section does not need to be modified by sulfydryl or a fluorescence group, thus achieving convenient application. In the invention, the detected single-stranded DNA is nucleic acid of an arbitrary sequence section; and theoretically the invention is applicable to an arbitrary single-stranded nucleic acid sequence which can not form an internal double-strand, thus the single-stranded nucleic acid sequence is displaced into a specific sequential gene related to diseases, i.e. the invention can be used in gene detection related to diseases, thus having wide application prospect.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products