Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

953results about How to "Uniform size distribution" patented technology

Foam of thermoplastic urethane elastomer composition and process for producing the foam

InactiveUS6849667B2Improve mechanical propertiesSolve uneven compositionPolymer scienceCarbamate
The method of the present invention for producing a urethane-based thermoplastic elastomer composition foam comprises the steps of:
    • adding and mixing 0.1 to 30 parts by weight of carbon dioxide (B) to 100 parts by weight of a urethane-based thermoplastic elastomer composition (A) in a molten state, wherein said urethane-based thermoplastic elastomer composition (A) comprises a urethane-based thermoplastic elastomer (A-1) and other thermoplastic elastomer (A-2) in an (A-1)/(A-2) ratio of 20/80 to 99/1 by weight, to form a molten urethane-based thermoplastic elastomer composition (C) which is in a state of a mixture of the urethane-based thermoplastic elastomer composition (A) and the carbon dioxide (B) (gas dissolving step); and
    • lowering a temperature of said molten urethane-based thermoplastic elastomer composition (C) (cooling step).
The present invention can produce the urethane-based thermoplastic elastomer foam of stable quality over a range from low foamed product to highly foamed product by adding a given quantity of carbon dioxide in the molten urethane-based thermoplastic elastomer quantitatively and stably. It can also produce the foam excellent in flexibility, thermal insulation and surface appearances. It is also excellent in safety, because of use of carbon dioxide in place of the common foaming agent of fluorochlorohydrocarbon or butane, thus causing no air pollution or destruction of the ozone layer.
Owner:MITSUI CHEM INC

Nitrogen-doped high-luminescent carbon quantum dot and preparation method thereof

The invention provides a nitrogen-doped high-luminescent carbon quantum dot and a preparation method thereof. The preparation method comprises the following steps: reacting by using a sodium citrate solution as a carbon source and ethanediamine as a source of N under a sealing condition, cooling an obtained product, then separating, and drying a solution obtained after separation so as to obtain the nitrogen-doped high-luminescent carbon quantum dot. The preparation method is simple in process, short in preparation period, low in manufacturing cost and good in repeatability; obtained raw materials are simple and easily available. The nitrogen-doped high-luminescent carbon quantum dot prepared by using the method is uniform in size distribution and high in luminescent density; the luminescent density of the nitrogen-doped high-luminescent carbon quantum dot is about 20 times of that of a general quantum dot, so that the application of the nitrogen-doped high-luminescent carbon quantum dot in the field of cell marking can be expanded. As the improvement of the luminescent density is caused by nitrogen doping, the nitrogen-doped high-luminescent carbon quantum dot prepared by the method has unique application when being used for detecting whether N exists in environments.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Multi-layer graphene/lithium iron phosphate intercalated composite material, preparation method thereof, and lithium ion battery adopting multi-layer grapheme/lithium iron phosphate intercalated composite material as anode material

The invention relates to a lithium iron phosphate intercalated composite material, a preparation method thereof and a lithium ion battery adopting the multi-layer graphene / lithium iron phosphate intercalated composite material as an anode material. In the prior art, the electronic conductivity of the lithium iron phosphate material is poor, high-rate charging / discharging capacity of the lithium ion battery adopting the lithium iron phosphate material as the anode material is poor. The purpose of the present invention is to solve the problems in the prior art, and improve the rapid charging capacity of the power lithium ion battery so as to meet the requirements of the pure electrocar. The composite material is prepared through the following steps that: a rheological phase reaction method is adopted for multi-layer graphene, a trivalent iron salt, a phosphorus compound, a lithium compound and carbon source of small organic molecule to obtain a composite precursor, then the precursor is sintered to obtain the multi-layer graphene / lithium iron phosphate intercalated composite material. The anode slurry of the lithium ion battery anode plate comprises the composite material, a conductive agent and polyvinylidene difluoride. The composite material is an intercalated structure, wherein the lithium iron phosphate particles are intercalated between the multi-layer graphene to form the intercalated structure. The trivalent iron salt is adopted as the raw material, such that the cost is reduced. The lithium ion battery has good charging / discharging cycle performance, wherein the specific capacity is more than 60 mA.h.g<-1> at the rate of 20C.
Owner:HARBIN INST OF TECH

Method for preparing copper-titanium dioxide core-shell nanoparticles

InactiveCN102335605ASmall particle sizeMorphological components are adjustableElectrolytic capacitorsCell electrodesPolyethylene glycolSolvent
The invention relates to a method for preparing copper-titanium dioxide core-shell nanoparticles. In the method, cupric ions provided by cuprous chloride are dissolved into ammonia water; an aqueous solution of polyethylene glycol, an aqueous solution of sodium citrate, an aqueous solution of ascorbic acid, a solution of tetrabutyl titanate (absolute ethyl alcohol) and urea are sequentially addedinto the ammonia water; the ammonia water is put into a teflon-lined stainless steel autoclave after the ammonia water is stirred at room temperature; and the nearly-spherical core-shell nanoparticles are prepared through controlling the temperature and the time for the thermal reaction of the mixed solvents. In the method for preparing the copper-titanium dioxide core-shell nanoparticles, the ascorbic acid serves as a reducing agent and is used for reducing the cuprous ions; and the polyethylene glycol serves as a soft template. The method for preparing the copper-titanium dioxide core-shellnanoparticles has the advantages of simple process, environment-friendliness, low cost and the like; the outer layer of each of the prepared copper-titanium dioxide core-shell nanoparticles is anatase titanium dioxide, and the inner layer of each of the prepared copper-titanium dioxide core-shell nanoparticles is cubic-phase copper elementary substance; and the size distribution is even, and the particle size is controllable, thus the copper-titanium dioxide core-shell nanoparticles can be used as the electrode materials and the photocatalyst materials of dye-sensitized solar cells.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Device and method for recovering residual heat by dry-process granulation of metallurgical slag

ActiveCN103924012AUniform size distributionHigh degree of vitrificationMetallurgical slagMolten slag
The invention provides a device and a method for recovering residual heat by dry-process granulation of metallurgical slag. According to the device, a granulation system and a heat exchange system are systematically transformed, so that blocky slag and slag wool are greatly reduced and cooled slag particles obtained by granulation is relatively uniform in size distribution, relatively high in vitrification degree and good in sphericity and can be directly used as raw materials for producing subsequent products such as cement; the limitation on the slag feeding flow caused by a revolving cup is reduced, so that the rotary energy of the porous revolving cup in a rotary granulation process can be fully utilized, the porous revolving cup can run at a relatively high rotary speed and the granulation efficiency is improved; meanwhile, a two-stage residual heat recovery system is adopted, relatively high heat exchange efficiency and residual heat recovery rate are taken into account, and the problems of low granulation efficiency, relatively poor granulation effect, low heat exchange efficiency, influence on residual heat recovery and utilization and the like during a process for recovering residual heat by dry-process granulation of metallurgical slag in the prior art are solved.
Owner:CHONGQING UNIV

Ceramic solid electrolyte and preparation method thereof

The invention discloses a ceramic solid electrolyte and a preparation method thereof. The ceramic solid electrolyte comprises at least one of NASICON structure type (LiM<2>(PO<4>)<3>, M=Zr, Ge, Mg, Al), oxide (Li<3x>La<2/3-x>TiO<3>) of perovskite structure and oxide (Li<5>La<3>M<2>O<12>) of garnet structure. The preparation method of the ceramic solid electrolyte comprises the following steps of: a) weighing raw materials according to molar ratio of elements in chemical formula of the ceramic solid electrolyte, dissolving the raw materials in solvent, and obtaining mixed solution; b) preparing ceramic solid electrolyte precursor powder from the mixed solution through a spray drying process; c) sintering the precursor powder obtained by spray drying in the air, and finally obtaining the ceramic solid electrolyte with relatively high ionic conductivity and relatively low electronic conductivity. In the method provided by the invention, the spray drying process is used for preparing the ceramic solid electrolyte, spray drying has the advantages that the drying procedure is fast, the mixed solution is directly dried into powder and particle size distribution of the powder is uniform, and thus, large-scale preparation of the ceramic solid electrolyte is expected to be realized, and the method has practical value.
Owner:HARBIN INST OF TECH

Preparation method of aluminum oxide microbeads

The invention discloses a preparation method of aluminum oxide microbeads. The preparation method comprises the following steps: by adopting aluminum oxide powder with lower alpha phase conversion rate (80-90%) as a main raw material, adding a composite sintering additive, ball-milling through an intermittent ball mill and a vertical sand mill, and then performing centrifugal type spray pelletization, rolling to forming, drying, sintering in a rotary kiln, and continuous grinding and polishing, to obtain the aluminum oxide microbeads. According to the preparation method, the aluminum oxide powder with relatively low alpha phase conversion rate is adopted, activity of the remaining gamma-aluminum oxide phase in the aluminum oxide powder promotes the sintering of the aluminum oxide, the addition amount of the sintering additive is decreased, and meanwhile the problem that the aluminum oxide microbeads during the sintering of the rotary kiln are caked and collided to be deformed due to excessive glass phase can be solved. Rotary kiln sintering equipment is introduced, the microbeads are under a moving status during the sintering of the rotary kiln, and are evenly heated during sintering, thus being uniform in the structure and performances. The prepared aluminum oxide microbeads have the characteristics of being low in abrasion, high in strength and density, uniform in particle size, free from breakage of beads, and the like.
Owner:JINGANG NEW MATERIALS

Core-shell structure high nickel gradient nickel cobalt manganese aluminum quaternary positive electrode material and preparation method thereof

The invention provides a core-shell structure high nickel gradient nickel cobalt manganese aluminum quaternary positive electrode material and a preparation method thereof. The quaternary positive electrode material is spherical particles with an average particle size of 8-10 microns, the diameter of the inner core is 4-6 microns, the thickness of the shell layer is 2-3 microns and the surface ofthe shell layer is sheet-shaped. The nickel content gradually decreases from the center of the core to the surface of the shell structure, the manganese content gradually increases from the center ofthe core to the surface of the shell structure, the cobalt content is uniformly distributed and the aluminum content is uniformly or gradient distributed. The preparation method comprises the follow steps: a low nickel solution I is continuously added into a high nickel solution so that the nickel content in the high nickel solution is continuously reduced, and then the low nickel solution I is continuously pumped into an ammonia aqueous solution to form a continuous reaction system with reduced nickel content, and further hydroxide and carbonate are successively used as precipitants and ammonia water is used as a complexing agent to successively coprecipitate to generate a precursor with a core-shell structure; and then the precursor is sintered with lithium so as to prepare the core-shell structure high nickel gradient nickel cobalt manganese aluminum quaternary positive electrode material. The battery assembled by the positive electrode prepared by the core-shell structure high nickel gradient nickel cobalt manganese aluminum quaternary positive electrode material has high capacity, excellent cycle and rate performance and highly reversible charge-discharge reaction.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products