Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1721 results about "Perovskite (structure)" patented technology

A perovskite is any material with the same type of crystal structure as calcium titanium oxide (CaTiO₃), known as the perovskite structure, or XᴵᴵA²⁺ⱽᴵB⁴⁺X²⁻₃ with the oxygen in the edge centers. Perovskites take their name from the mineral, which was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and is named after Russian mineralogist L. A. Perovski (1792–1856). The general chemical formula for perovskite compounds is ABX₃, where 'A' and 'B' are two cations of very different sizes, and X is an anion that bonds to both. The 'A' atoms are larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. The relative ion size requirements for stability of the cubic structure are quite stringent, so slight buckling and distortion can produce several lower-symmetry distorted versions, in which the coordination numbers of A cations, B cations or both are reduced.

Perovskite thin-film photovoltaic cell and manufacturing method thereof

The invention relates to a perovskite thin-film photovoltaic cell and a manufacturing method of the perovskite thin-film photovoltaic cell. The perovskite thin-film photovoltaic cell is composed of a conducting transparent substrate, a perovskite light-absorbing layer, a hole transfer layer and a metal electrode. The perovskite thin-film photovoltaic cell has the advantages that the structure is quite simple, a traditional electron transfer layer which needs high-temperature sintering is omitted due to the fact that a perovskite material serves as the light-absorbing layer and achieves the electron transfer function, and a porous layer is not needed either; the perovskite material is high in light-absorbing performance, the whole cell is manufactured at a low temperature, the complicated processes such as high-temperature sintering are not needed, and therefore the manufacturing cost of the cell is effectively reduced; the great promotion function is achieved on the flexibility of the cell and the large-sized reel-to-reel printing manufacturing of the cell; the whole manufacturing technology of the cell is simple, the popularization of the technology is facilitated, high photoelectric converting efficiency (approximate to 14 percent) and good device stability are obtained particularly, and therefore the industrial application prospect is achieved.
Owner:WUHAN UNIV

Perovskite solar cell with interface modification layers and preparation method of perovskite solar cell

The invention relates to a perovskite solar cell with interface modification layers. The cross-sectional structure of the perovskite solar cell includes a transparent conductive substrate, a first transmission layer, a perovskite active layer, a second transmission layer and a back electrode; at least one first interface modification layer is disposed between the perovskite active layer and the first transmission layer; and no or at least one second interface modification layer is disposed between the perovskite active layer and the second transmission layer. The invention also discloses a preparation method of the perovskite solar cell. According to the method, the interface modification layers are additionally arranged between the perovskite active layer and transmission layers of a perovskite solar cell, so that the perovskite solar cell with the interface modification layers can be prepared; the surfaces of the transmission layers are passivated; the crystal structure of the perovskite is optimized; ion migration in the perovskite active layer is suppressed to a certain extent; and therefore, the photoelectric conversion efficiency and long-term stability of the perovskite cellare improved.
Owner:HANGZHOU MICROQUANTA SEMICON CO LTD

Novel method for improving uniformity and crystallinity of organic-inorganic perovskite thin film

The invention relates to a novel process for preparing an organic-inorganic perovskite thin film through adopting an experimental scheme in which two kinds of metal compounds are adopted as precursors. With the novel process adopted, an efficient solar battery device with a planar structure can be prepared. According to the novel process, the two kinds of metal compound precursors are compounded, and therefore, a pinhole defect of the perovskite thin film can be effectively avoided, and compound of electrons and holes can be alleviated, and short-circuiting risks of the perovskite thin film can be decreased. The novel process of the invention belongs to the photoelectric material field and is characterized in that the two kinds of metal compounds are selected as a source of metal ions in a perovskite material, wherein the general formula of the organic-inorganic perovskite material is ABX3, wherein A is CH3NH3 or NH2-CH=NH2, B is Pb or Sn, and X is I or Br. With the preparation method adopted, the thickness of the perovskite thin film is uniform, and the crystallinity of the perovskite thin film is high, the perovskite thin film can have high electron and hole transport ability. The preparation method is suitable for large-area preparation of organic-inorganic perovskite solar battery devices with planar structures.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Mesoscopic perovskite photovoltaic cell with tin-oxide electron-transporting layer and preparation method thereof

The invention relates to a perovskite photovoltaic cell with bilayer nanometer mesoporous electron-transporting layer and preparation method thereof. The cell comprises a conducting substrate, an electron-transporting layer with double-layer structure, a perovskite light absorption layer, a hole-transporting layer and metal electrodes. The perovskite photovoltaic cell with bilayer nanometer mesoporous electron-transporting layer has the advantages that the SnO2 with one step method low-temperature growth, is used as the electron-transporting layer in the photovoltaic cell, replaces the TiO2 electron-transporting layer with two steps method high temperature sintering, and the preparation process is simplified. The mesoporous perovskite photovoltaic cell prepared with one step low-temperature growth method obtains 13.82% of highlight electricity transfer efficiency, and reduces the manufacturing cost effectively at the same time. Compared with a planer construction, the mesoporous structure used in the perovskite photovoltaic cell is liable for the adherence of the perovskite light absorption material. SnO2 conducts a smaller dissimilation on the perovskite light absorption layer than the TiO2 does, the performance and stability of the cell are improved in this way. The perovskite photovoltaic cell with bilayer nanometer mesoporous electron-transporting layer and preparation method thereof plays a great promoting role in the development and popularization on the flexible solar cell, and further promotes the industrialized application on the perovskite solar cell.
Owner:WUHAN UNIV

Method for synthesizing silicon dioxide cladded organic-inorganic perovskite structure quantum dot and application of quantum dot synthesized by method

The invention relates to a method for synthesizing a silicon dioxide cladded organic-inorganic perovskite structure quantum dot and application of the quantum dot synthesized by the method, and belongs to the field of nano-material synthesis. The method comprises the following steps: taking methylammonium halide and lead halide as raw materials and taking oleic acid and an amino-containing silane coupling agent as ligands to synthesize the stable and efficient silicon dioxide cladded organic-inorganic perovskite structure quantum dot, which is capable of being processed in a solution, in one step through a solution method at room temperature. According to the method provided by the invention, the stability of the quantum dot is greatly increased through silicon dioxide cladding; meanwhile, high fluorescent quantum efficiency of the quantum dot is ensured and can reach 95 percent at maximum. Meanwhile, the quantum dot prepared by the method can be dispersed into solvents including toluene and the like to form a stable solution. A quantum dot solution and a toluene solution of polystyrene are mixed and can be used for preparing a warm white-light light emitting diode; the prepared white-light light emitting diode has a color coordinate (0.38, 0.43) and color temperature of 4500K, and can be applied to various fields including information storage, information encryption, counterfeiting prevention, illumination display and the like.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Mesoporous perovskite solar cell and preparation method thereof

The invention discloses a mesoporous perovskite solar cell and a preparation method thereof. The mesoporous perovskite solar cell comprises a transparent conductive base, a compact layer, a skeleton layer, a perovskite layer, a hole transmission layer and a counter electrode, wherein the compact layer, the skeleton layer, the perovskite layer, the hole transmission layer and the counter electrode are sequentially stacked on the transparent conductive base; and the skeleton layer is a barium stannate film with a perovskite structure and the like, and has p-type conductivity or n-type conductivity or comprises an insulator. With a novel perovskite oxide as the skeleton layer, the mesoporous perovskite solar cell has relatively high charge collection efficiency, and is relatively good in contact with a perovskite layer interface. Compared with a traditional titanium dioxide compact layer, the photoelectric properties such as short-circuit current and filling factors can be effectively improved; leakage current caused by contact of the hollow transmission layer and an electron transmission layer is reduced; reverse recombination of photoelectrons is prevented; and the photoelectric conversion efficiency is improved.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Ceramic solid electrolyte and preparation method thereof

The invention discloses a ceramic solid electrolyte and a preparation method thereof. The ceramic solid electrolyte comprises at least one of NASICON structure type (LiM<2>(PO<4>)<3>, M=Zr, Ge, Mg, Al), oxide (Li<3x>La<2/3-x>TiO<3>) of perovskite structure and oxide (Li<5>La<3>M<2>O<12>) of garnet structure. The preparation method of the ceramic solid electrolyte comprises the following steps of: a) weighing raw materials according to molar ratio of elements in chemical formula of the ceramic solid electrolyte, dissolving the raw materials in solvent, and obtaining mixed solution; b) preparing ceramic solid electrolyte precursor powder from the mixed solution through a spray drying process; c) sintering the precursor powder obtained by spray drying in the air, and finally obtaining the ceramic solid electrolyte with relatively high ionic conductivity and relatively low electronic conductivity. In the method provided by the invention, the spray drying process is used for preparing the ceramic solid electrolyte, spray drying has the advantages that the drying procedure is fast, the mixed solution is directly dried into powder and particle size distribution of the powder is uniform, and thus, large-scale preparation of the ceramic solid electrolyte is expected to be realized, and the method has practical value.
Owner:HARBIN INST OF TECH

Preparation method and application of perovskite type composite oxide catalyst

The invention discloses a preparation method and application of a perovskite type composite oxide catalyst. The perovskite type composite oxide catalyst is an A-position substituted perovskite type composite oxide. The structural formula of the catalyst is A1-xA'xBO3, wherein x is larger than 0 and smaller than 1; A is La or Nd element; the A'-position substitution ion is one of Ca, Sr, Ba, Ce and the like; and the B-position ion is one of Mn, Co, Ni, Fe and the like. The preparation method comprises the following steps of: according to a chemical metering ratio, weighing a water-soluble salt which contains the A-position, A'-position and B-position elements; mixing the salt and deionized water to obtain 5 to 20 percent salt solution; adding the solution into a beaker; adding activated carbon of which the mass is 0.1 to 1.5 times of the salt into the solution; completely soaking the activated carbon and standing; heating and stirring the mixture, continuously heating until the water content is completely evaporated, wherein the co-crystallized solid mixture is uniformly carried on the activated carbon, and after drying the mixture, grinding the mixture into powder; and sintering the powder in a muffle furnace, cooling the sintered powder with the furnace to room temperature, and grinding the cooled powder to obtain the powder of the perovskite type composite oxide mixed catalyst. The preparation method is suitable for production; and the electrode activity of the perovskite type catalyst can be greatly improved in a zinc air cell structure.
Owner:BEIJING CHANGLI UNION ENERGY TECH CO

Dielectric filler containing resin for use in formation of built-in capacitor layer of printed wiring board and double-sided copper clad laminate with dielectric layer formed using the same dielectric filler containing resin, and production method of double-sided copper clad laminate

An object is to provide a dielectric layer of a double-sided copper clad laminate, for use in formation of a built-in capacitor layer, which can be formed in an optional thickness without using a skeletal material and is provided with a high strength. For the purpose of achieving the object, “a dielectric filler containing resin for use in formation of the built-in capacitor layer of a printed wiring board obtained by mixing a binder resin comprising 20 to 80 parts by weight of epoxy resin (inclusive of a curing agent), 20 to 80 parts by weight of a solvent soluble aromatic polyamide resin polymer, and a curing accelerator added in an appropriate amount according to need; and a dielectric filler which is a nearly spherical dielectric powder having perovskite structure which is 0.1 to 1.0 μm in the average particle size DIA, 0.2 to 2.0 μm in the weight cumulative particle size D50 based on the laser diffraction scattering particle size distribution measurement method, and 4.5 or less in the coagulation degree represented by D50/DIA where the weight cumulative particle size D50 and the average particle size DIA obtained by the image analysis”; and the like are used.
Owner:MITSUI MINING & SMELTING CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products