The present invention relates to a
glass matrix which includes 4-70 wt.% SiO2, 0.5-20 wt.% Al2O3, 0-20 wt.% R2O, 0-30 wt.% R'O, 8-85 wt.% Ta2O5, 0-40 wt.% Nb2O5, and 0.01-1.0 wt.% R''2O3, where R2O + R'O is between about 2-35 wt.%, Ta2O5 + Nb2O5 is between about 8-85 wt.%, R is selected from a group consisting of Li, Na, K, and combinations thereof, R' is selected from a group consisting of Ba, Sr, Ca, Mg, Zn, Pb, and combinations thereof, and R'' is a
rare earth element. The present invention also relates to use of the
glass matrix in forming optic waveguides such as optic amplifiers. The present invention further relates to a transparent
glass ceramic that contains
pyrochlore,
perovskite, or a combination thereof as its major
crystal phase, and includes 4-40 wt.% SiO2, 1-15 wt.% Al2O3, 0-20 wt.% K2O, 0-12 wt.% Na2O, 0-5 wt.% Li2O, 8-85 wt.% Ta2O5, and 0-45 wt.% Nb2O5, wherein Ta2O5 + Nb2O5 is at least about 20 wt.% and (K2O + Li2O + Na2O) is between about 5-20 wt.%. Also disclosed is a method of making the
glass ceramic and use of the
glass ceramic as a ferro-electric component in electro-optical devices or as a filtering core in an optical filtering device.