Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2303 results about "Praseodymium" patented technology

Praseodymium is a chemical element with the symbol Pr and atomic number 59. It is the third member of the lanthanide series and is traditionally considered to be one of the rare-earth metals. Praseodymium is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

Rare-earth doping modified lithium ion battery ternary positive electrode material and preparation method thereof

The invention relates to a rare-earth doping modified lithium ion battery ternary positive electrode material and a preparation method of the rare-earth doping modified lithium ion battery ternary positive electrode material. The chemical general formula of the material is as follows: LiNiaCo<1-a-b>MnbRxO2/M, wherein a is more than 0 and less than 1, b is more than 0 and less than 1, (1-a-b) is more than 0 and less than 1, x is more than 0.005 and less than 0.1, R is one or more of rare-earth lanthanum, cerium, praseodymium and samarium, and M is a composite cladding layer of oxide of aluminum, titanium or magnesium and carbon. The soluble metal nickel salt, cobalt salt, manganese salt and rare-earth compound are mixed to prepare a mixed salt solution, the mixed salt solution is reacted with a mixed alkaline solution prepared by mixing NaOH and ammonium hydroxide, after the reaction solution is filtered, washed and dried, the obtained product is uniformly mixed with lithium salt powder to be ball milled, then the mixture is calcined at the high temperature and coated with the composite cladding layer of the aluminum, titanium or magnesium oxide and carbon, and finally the calcined mixture is calcined at a constant temperature to obtain the rare-earth doping modified lithium ion battery ternary positive electrode material. After doping the rare earth, the metal oxide and carbon composite cladding layer, which are cheap and easy to obtain, are adopted, so that the cycling performance and the rate performance can be improved, and the charging-discharging efficiency of the material also can be improved.
Owner:ZHEJIANG MEIDARUI NEW MATERIAL TECH CO LTD

BONDED La(Fe,Si)13-BASED MAGNETOCALORIC MATERIAL AND PREPARATION AND USE THEREOF

Provided is a high-strength, bonded La(Fe, Si)13-based magnetocaloric material, as well as a preparation method and use thereof. The magnetocaloric material comprises magnetocaloric alloy particles and an adhesive agent, wherein the particle size of the magnetocaloric alloy particles is less than or equal to 800 μm and are bonded into a massive material by the adhesive agent; the magnetocaloric alloy particle has a NaZn13-type structure and is represented by a chemical formula of La1-xRx(Fe1-p-qCopMnq)13-ySiyAα, wherein R is one or more selected from elements cerium (Ce), praseodymium (Pr) and neodymium (Nd), A is one or more selected from elements C, H and B, x is in the range of 0≦x≦0.5, y is in the range of 0.8≦y≦2, p is in the range of 0≦p≦0.2, q is in the range of 0≦q≦0.2, α is in the range of 0≦α≦3.0. Using a bonding and thermosetting method, and by means of adjusting the forming pressure, thermosetting temperature, and thermosetting atmosphere, etc., a high-strength, bonded La(Fe, Si)13-based magnetocaloric material can be obtained, which overcomes the frangibility, the intrinsic property, of the magnetocaloric material. At the same time, the magnetic entropy change remains substantially the same, as compared with that before the bonding. The magnetic hysteresis loss declines as the forming pressure increases. And the effective refrigerating capacity, after the maximum loss being deducted, remains unchanged or increases.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI +1

Rare earth permanent magnet produced by applying abundant rare earth cerium (Ce) and preparation method thereof

ActiveCN103123839AReduce production and sales balancePromote the balance of production and salesInductances/transformers/magnets manufactureMagnetic materialsRare-earth elementCost Controls
The invention discloses a rare earth permanent magnet produced by applying abundant rare earth cerium (Ce) and a preparation method of the rare earth permanent magnet produced by applying abundant rare earth Ce. Based on a double-alloy process, main phase alloy formula uses Ce to partly replace neodymium (Nd), an optimized composition design enables a main alloy to form Ce2Fe14B phase and Nd2Fe14B phase to a greatest extent, and therefore high intrinsic magnetic property is guaranteed. A brand new crystal boundary phase is prepared by a crystal boundary reconstitution technology, and high integral magnetic property and corrosion resistant property are guaranteed, and meanwhile a nanometer powder crystal modification method is supplemented, a micro organization structure of a magnet is optimized, crystal boundary distribution is improved, and the magnetic property and the corrosion resistant property are further improved. By applying abundant rare earth cerium, cost is effectively reduced, and meanwhile balance between production and marketing is promoted. Praseodymium (Pr), Nd, and the like are chosen to form a hard magnetic shell layer of a main phase boundary in a composition design of crystal phase auxiliary alloy at the same time, compared high price heavy rare earth elements of dysprosium (Dy) and terbium (Tb) with the elements, and cost control can be further achieved.
Owner:ZHEJIANG UNIV +1

Rare earth aluminum alloy, and method and device for preparing same

The invention discloses a rare earth aluminum alloy, and a method and a device for preparing the same. The alloy contains at least one rare earth metal of lanthanum, cerium, praseodymium, neodymium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, lutetium, scandium and yttrium, the content of raw earth is 5 to 98 weight percent, and the balance is aluminum and inevitable impurities. The device for preparing the rare earth aluminum alloy is characterized in that: a) graphite serves as an electrolysis bath, a graphite plate is an anode, a tungsten bar is a cathode and a molybdenum crucible serves as a rare earth aluminum alloy receiver; b) the diameter of the tungsten bar is 30 to 55 mm; and c) the anode of the graphite consists of a plurality of graphite plates. The rare earth aluminum alloy, and the method and the device for preparing the same have the advantages that: the alloy has uniform components, little segregation and low impurity content; technology for preparing the rare earth aluminum alloy through fusion electrolysis can maximally replace a process for preparing single medium-heavy metal through metallothermic reduction, greatly reduce energy consumption and the emission of fluorine-containing tail gas and solid waste residue, improve current efficiency and metal yield and reduce the consumption of auxiliary materials and the energy consumption; and the rare earth aluminum alloys with different rare earth contents can be obtained by controlling different electrolytic temperatures and different cathode current densities.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Praseodymium-doped calcium titanate luminescent powder and preparation method thereof

The invention provides praseodymium-doped calcium titanate luminescent powder and a preparation method thereof. The preparation method comprises the following steps: at room temperature, weighing a certain amount of CaCO3 and Pr6O11 solid according to a molar ratio of Pr<3+> / Ca<2+> of 0.005 / 1, dissolving the solid in dilute nitric acid, heating and stirring the solution to remove excessive acid, and heating the solution to a melting state after the pH value of the solution reaches 2 to 3; after the solution is cooled to room temperature, adding 20 milliliters of tetrabutyl titanate and 20 milliliters of water-ethanol solution into the solution according to a stoichiometric proportion, then adding a certain amount of citric acid as complexing agent into the solution, adding polyethylene glycol into the solution, and stirring the solution for 2 hours to obtain an even transparent sol precursor; spraying and drying the obtained precursor solution to obtain precursor powder; and putting the precursor powder into a programmed temperature rising furnace, heating the precursor powder to between 600 and 1,000 DEG C, and then keeping the precursor powder for 3 hours at a constant temperature to obtain CaTiO3:Pr<3+> luminescent powder. The praseodymium-doped calcium titanate luminescent powder prepared by the method has good crystallization degree and high purity, and is a CaTiO3 pure phase of a perovskite structure.
Owner:HARBIN ENG UNIV

Preparation method for uniform gradient-colour zirconium oxide porcelain blocks

The invention relates to zirconium oxide porcelain blocks for dental prosthesis, and aims at providing a preparation method for uniform gradient-colour zirconium oxide porcelain blocks. The preparation method comprises the following steps: (1) weighing the raw materials of CeO2, Fe2O3, ZrO2, Y2O3, Pr6O11 and Er2O3; (2) adding a polymer binder in the dried mixed powder, and granulating; (3) shaping the granulated material by a die by means of dry pressing to obtain porcelain block blanks; (4) carrying out isostatic cool pressing on the shaped porcelain block blanks; (5) pre-sintering the porcelain block blanks after the isostatic cool pressing; (6) flatly placing the pre-sintered porcelain block blanks in a dyeing container and dyeing, wherein the depth of soaking solution in the dyeing container is 0.1-5mm, the dyeing time is 1-3min, and the used dyeing solution comprises 1-5wt% of polyethylene glycol, 0.1-3wt% of erbium oxide, 0.5-10wt% of praseodymium oxide and the balance of ultrapure water; and (7) sintering the dyed porcelain blocks to obtain the uniform gradient-colour zirconium oxide porcelain blocks for dentistry. The porcelain blocks disclosed by the invention are stable and uniform in colouring, and continuous and uniform in colour changes.
Owner:CHENGDU BESMILE BIOTECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products