Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

164 results about "Equivalent oxide thickness" patented technology

An Equivalent oxide thickness is a distance, usually given in nanometers (nm), which indicates how thick a silicon oxide film would need to be to produce the same effect as the high-κ material being used. The term is often used when describing field effect transistors which rely on an electrically insulating pad of material between a gate and a doped semiconducting region. Device performance has typically been improved by reducing the thickness of a silicon oxide insulating pad.

Gate oxides

A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Also shown is a gate oxide with a conduction band offset of 2 eV or greater. Gate oxides formed from elements such as yttrium and gadolinium are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which further inhibits reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
Owner:HEWLETT PACKARD CO +1

Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics

A praseodymium (Pr) gate oxide and method of fabricating same that produces a high-quality and ultra-thin equivalent oxide thickness as compared to conventional SiO2 gate oxides are provided. The Pr gate oxide is thermodynamically stable so that the oxide reacts minimally with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which further inhibits reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit a Pr layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
Owner:MICRON TECH INC

Crystalline or amorphous medium-K gate oxides, Y2O3 and Gd2O3

A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Also shown is a gate oxide with a conduction band offset of 2 eV or greater. Gate oxides formed from elements such as yttrium and gadolinium are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which further inhibits reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
Owner:MICRON TECH INC

Evaporation of Y-Si-O films for medium-K dielectrics

A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Gate oxides formed from yttrium, silicon, and oxygen are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which inhibits unwanted species migration and unwanted reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
Owner:MICRON TECH INC

Scavanging metal stack for a high-k gate dielectric

ActiveUS20100320547A1Constant threshold voltageReduce equivalent oxide thicknessTransistorSemiconductor/solid-state device manufacturingDielectricEquivalent oxide thickness
A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2 / y MxOy→2x / y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
Owner:GLOBALFOUNDRIES US INC

Method of integration of nitrogen bearing high K film

A transistor and a method of making the same are provided. The transistor includes a substrate that has an upper surface and a gate dielectric layer positioned on the substrate that has a first quantity of nitrogen therein. A gate electrode is positioned on the gate dielectric layer. First and second source / drain regions are positioned in the substrate and laterally separated to define a channel region beneath the gate dielectric layer. The gate dielectric layer may be composed of a high K material with a thin equivalent thickness of oxide, such as TiO2, Ta2O5, CrO2 or SrO2. The nitrogen suppresses later oxide formation which may otherwise increase the equivalent thickness of oxide of the gate dielectric layer. Nitrogen may also be incorporated into the substrate and the gate electrode.
Owner:GLOBALFOUNDRIES INC

Highly reliable amorphous high-k gate dielectric ZrOxNy

A gate dielectric and method of fabricating a gate dielectric that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. Gate dielectrics formed from metals such as zirconium are thermodynamically stable such that the gate dielectrics formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The addition of nitrogen to the microstructure of the gate dielectric promotes an amorphous phase that further improves the electrical properties of the gate dielectric. The process shown is performed at lower temperatures than the prior art, which inhibits unwanted species migration and unwanted reactions with the silicon substrate or other structures. By using a thermal evaporation technique to first deposit a metal layer, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate dielectric.
Owner:MICRON TECH INC

Steady state method for measuring the thickness and the capacitance of ultra thin dielectric in the presence of substantial leakage current

A method is described for measuring the capacitance and the equivalent oxide thickness of an ultra thin dielectric layer on a silicon substrate in which the dielectric layer is uniform or patterned. The surface of a dielectric layer is electrically charged by a flux on ions from a corona discharge source until a steady state is reached when the corona flux is balanced by the leakage current across a dielectric. The flux is abruptly terminated and the surface potential of a dielectric is measured versus time. The steady state value of the surface potential is obtained by extrapolation of the potential decay curve to the initial moment of ceasing the corona flux. The thickness of a dielectric layer is determined by using the steady state potential or by using the value of the surface potential after a predetermined time.
Owner:SEMICON DIAGNOSTICS

Backgated finfet having diferent oxide thicknesses

A method of producing a backgated FinFET having different dielectric layer thickness on the front and back gate sides includes steps of introducing impurities into at least one side of a fin of a FinFET to enable formation of dielectric layers with different thicknesses. The impurity, which may be introduced by implantation, either enhances or retards dielectric formation.
Owner:GLOBALFOUNDRIES INC

Method for integrating high-k dielectrics in transistor devices

Methods are disclosed that fabricating semiconductor devices with high-k dielectric layers. The invention removes portions of deposited high-k dielectric layers not below gates and covers exposed portions (e.g., sidewalls) of high-k dielectric layers during fabrication with an encapsulation layer, which mitigates defects in the high-k dielectric layers and contamination of process tools. The encapsulation layer can also be employed as an etch stop layer and, at least partially, in comprising sidewall spacers. As a result, a semiconductor device can be fabricated with a substantially uniform equivalent oxide thickness.
Owner:TEXAS INSTR INC

Manufacturing method for semiconductor element

A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and / or restricted from growth. The invention is beneficial to controlling the equivalent oxide thickness of the gate structure. The gettering layer includes a dielectric layer and / or a metal layer, thus the gettering layer is able to be removed from the gate stack or retained in the structure.
Owner:TAIWAN SEMICON MFG CO LTD

Method of fabricating a CMOS device with dual metal gate electrodes

A method of constructing a dual metal gate CMOS structure that uses an ultra thin aluminum nitride (AINx) buffer layer between the metal gate and gate dielectric during processing for preventing the gate dielectric from being exposed in the metal etching process. After the unwanted gate metal is etched away, the CMOS structure is annealed. During the annealing, the buffer layer is completely consumed through reaction with the metal gate and a new metal alloy is formed, resulting in only a minimal increase in the equivalent oxide thickness. The buffer layer and gate metals play a key role in determining the work functions of the metal / dielectric interface, since the work functions of the original gate metals are modified as a result of the annealing process.
Owner:AGENCY FOR SCI TECH & RES +1

Method of making ultra thin gate oxide using aluminum oxide

A transistor and a method of making the same are provided. The method includes the step of forming a gate dielectric layer on the substrate where the gate dielectric layer is composed of an aluminum oxide containing material. A gate electrode is formed on the gate dielectric layer and first and second source / drain regions are formed in the substrate laterally separated to define a channel region beneath the gate electrode. The aluminum oxide containing material may be, for example, Al2O3. Aluminum oxide provides for a gate dielectric with a thin equivalent thickness of oxide in a potentially single crystal form.
Owner:GLOBALFOUNDRIES INC

Scavenging metal stack for a high-k gate dielectric

A stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the reaction Si+2 / y MxOy→2x / y M+SiO2 is positive 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor maintains a constant threshold voltage even after high temperature processes during CMOS integration.
Owner:GLOBALFOUNDRIES US INC

Method for gate leakage reduction and Vt shift control and complementary metal-oxide-semiconductor device

The present invention relates to a method for gate leakage reduction and Vt shift control, in which a first ion implantation is performed on PMOS region and NMOS region of a substrate to implant fluorine ions, carbon ions, or both in the gate dielectric or the semiconductor substrate, and a second ion implantation is performed only on the NMOS region of the substrate to implant fluorine ions, carbon ions, or both in the gate dielectric or the semiconductor substrate in the NMOS region, with the PMOS region being covered by a mask layer. Thus, the doping concentrations obtained by the PMOS region and the NMOS region are different to compensate the side effect caused by the different equivalent oxide thickness and to avoid the Vt shift.
Owner:UNITED MICROELECTRONICS CORP

Method of making high performance MOSFET with polished gate and source/drain feature

A transistor and a method of making the same are provided. The method includes the steps of forming a gate dielectric stack on the substrate that has a gate dielectric layer and forming first and second sidewall spacers adjacent the gate dielectric stack. A first portion of the gate dielectric stack is removed while a second portion thereof is left in place. First and second source / drain regions are formed in the substrate, and a conductor layer is formed over the first and second source / drain regions and on the second portion of the gate dielectric stack. The gate dielectric may be composed of a high dielectric constant material with a thin equivalent thickness of oxide. The method enables integrated processing of the gate electrode and source / drain metallization.
Owner:GLOBALFOUNDRIES INC

Metal oxynitride as a pFET material

A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (PMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
Owner:GLOBALFOUNDRIES US INC

Capacitor and methods of manufacturing the same

InactiveUS20060267019A1Sufficient equivalent oxide thicknessLeakage currentTransistorSolid-state devicesEquivalent oxide thicknessDielectric layer
In a capacitor having a semiconductor-insulator-metal (SIM) structure, an upper electrode may be formed into a multilayer structure including a polycrystalline semiconductor Group IV material. A dielectric layer may include a metal oxide, and a lower electrode may include a metal-based material. Therefore, a capacitor may have a sufficiently small equivalent oxide thickness (EOT) and / or may have improved current leakage characteristics.
Owner:SAMSUNG ELECTRONICS CO LTD

Reducing equivalent thickness of high-k dielectrics in field effect transistors by performing a low temperature anneal

InactiveUS20120238086A1Excellent interface characteristicEquivalent Thickness ReductionSemiconductor/solid-state device manufacturingSemiconductor devicesDielectricEquivalent oxide thickness
When forming sophisticated high-k metal gate electrode structures, for instance on the basis of a replacement gate approach, superior interface characteristics may be obtained on the basis of using a thermally grown base material, wherein the electrically effective thickness may be reduced on the basis of a low temperature anneal process. Consequently, the superior interface characteristics of a thermally grown base material may be provided without requiring high temperature anneal processes, as are typically applied in conventional strategies using a very thin oxide layer formed on the basis of a wet oxidation chemistry.
Owner:GLOBALFOUNDRIES INC

CMOS image sensor and manufacturing method thereof

Disclosed is a CMOS image sensor and a manufacturing method thereof. According to an aspect of the present invention, each pixel of CMOS image sensor includes a photo detector that includes an electon Collection layer doped with a concentration of 5×1015 / cm3 to 2×1016 / cm3; and a transfer transistor that is connected to the photo detector and is formed of a vertical type trench gate of which the equivalent oxide thickness is 120 Å or more.
Owner:ELECTRONICS & TELECOMM RES INST

Method of forming HfSiN metal for n-FET applications

A compound metal comprising HfSiN which is a n-type metal having a workfunction of about 4.0 to about 4.5, preferably about 4.3, eV which is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer. Furthermore, after annealing the stack of HfSiN / high k dielectric / interfacial layer at a high temperature (on the order of about 1000° C.), there is a reduction of the interfacial layer, thus the gate stack produces a very small equivalent oxide thickness (12 Å classical), which cannot be achieved using TaSiN.
Owner:GLOBALFOUNDRIES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products