Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

9338results about "Magnetic materials" patented technology

Protective assembly

An assembly for protecting biological tissue from the effects of heating. The assembly contains a conductor in contact with the biological tissue and forming an electrical circuit comprising the biological tissue. The assembly contains a device for modifying the impedance of the electrical circuit such that, at a frequency of from about 10 megahertz to about 150 megahertz, such impedance is at least about 0.5 ohms per centimeter of length of said conductor. The assembly also contains a device for limiting the flow of current through the biological tissue such that, when the assembly is exposed to an alternating current electromagnetic field at a frequency of 64 megahertz and a magnetic field strength of 1.5 Tesla for 15 minutes, the temperature of the biological tissue does not exceed 42 degrees Celsius.
Owner:BIOPHAN TECH

System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems

A process, system and sorbent for removal of mercury from a combustion exhaust gas stream in a combustion exhaust gas purification scheme that includes a combustion exhaust scrubber system that uses an aqueous liquid to remove acid gases from the combustion exhaust gas. A powdered mercury sorbent is used. The sorbent is introduced into the aqueous scrubber liquid in the scrubber system. After introduction of the mercury sorbent into the scrubber liquid, at least some of the mercury sorbent is separated from the scrubber liquid.
Owner:SRINIVASACHAR SRIVATS

Semiconductor device package integrated with coil for wireless charging and electromagnetic interference shielding, and method of manufacturing the same

The present disclosure relates to a semiconductor device package which includes a carrier, an electronic component, conductive elements, a package body, a shield, a magnetic insulating layer, and a patterned conductive layer. The carrier has a top surface on which the electronic component is disposed. The conductive elements are disposed on the top surface of the carrier. The package body is disposed on the top surface of the carrier and encapsulates the electronic component and a portion of each of the conductive elements. The shield is disposed on the package body and covers an exterior of the package body. The magnetic insulating layer is disposed on a top surface of the shield. The patterned conductive layer is disposed on the magnetic insulating layer. Each of the conductive elements electrically connects the patterned conductive layer to the electronic component.
Owner:ADVANCED SEMICON ENG INC

Magnet structure

InactiveUS7271689B1Minimize magnetic reluctanceMagnetsMagnetic materialsBrickMagnet
A magnet structure produces a field within a magnet gap. The field is provided at least in part by a pair of permanent magnets that are fixed in place by a frame. The frame fixes a magnet assembly that is adapted to hold the magnetic material composing the permanent magnets, such that the quantity of the magnetic material can be adjusted to suit the particular application. The magnetic material can be provided in the form of discrete magnetic elements, such as magnetic “bricks”. The frame also functions as the flux collector and return. Accordingly, the general geometry of the magnet structure is fixed, and the amount of magnetic material, and therefore the magnetic field strength, is adjustable.
Owner:FONAR

Thermal controlling method, magnetic field generator and MRI apparatus

With a view toward implementing a thermal controlling method for making reversible a temperature characteristic of a magnetic field generator using permanent magnets small in Hcj, a magnetic field generator whose temperature characteristic is reversible, using permanent magnets small in Hcj, and an MRI apparatus provided with such a magnetic field generator, there is provided a method for controlling the temperature of a magnetic field generator having a pair of disc-shaped permanent magnets whose magnetic poles opposite in polarity to each other are opposed to each other with spacing defined therebetween, and a yoke that forms return passes for magnetic fluxes of the permanent magnets, comprising the steps of raising the temperature from room temperature to a temperature higher than the room temperature, maintaining the temperature higher than the room temperature, and lowering the temperature from the temperature higher than the room temperature to the room temperature, whereby the temperature characteristics of the permanent magnets are made reversible.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

Energy management system for auxiliary power source

A control system is provided for controlling a load powered by an auxiliary power source during an interruption in the utility power source and / or during a power failure. The control system of the present invention provides power to essential loads in a dwelling as predetermined by a user and / or per the user's real-time instructions as the needs of the user may change. Additionally, the control system of the present invention automatically controls non-essential loads in order to maintain the auxiliary power load below the maximum threshold. Furthermore, the control system of the present invention allows the user to manually override all the controlled loads in an emergency or when the needs of the user change. Additionally, the control system of the present invention allows outside triggers to change the priority of the loads in real-time and can automatically change the priority due to predetermined tasks already running.
Owner:FJI HLDG

Water soluble metal and semiconductor nanoparticle complexes

The invention provides a water soluble complex comprising an inner core of a metal or semi-conductor nanoparticle. The nanoparticle is coated with a hydrophobic ligand, which is encapsulated in a micelle. In an aqueous medium, the micelle comprises a hydrophilic shell and a hydrophobic core, the hydrophilic shell comprising a plurality of hydrophilic moieties, the hydrophobic core comprising a plurality of hydrophobic moieties, each hydrophobic moiety comprising at least one chain, each chain comprising a minimum of 8 atoms; wherein the total number of atoms in all chains for each moiety comprises at least 24 atoms. The micelle has a minimum average diameter of approximately 5 nm and a maximum average diameter of approximately 45 nm.
Owner:THE ROCKEFELLER UNIV

Methods and reagents for the rapid and efficient isolation of circulating cancer cells

A highly sensitive assay is disclosed which combines immunomagnetic enrichment with multiparameter flow cytometric and immunocytochemical analysis to detect, enumerate and characterize carcinoma cells in the blood. The assay can detect one epithelial cell or less in 1 ml of blood and has a greater sensitivity than conventional PCR or immunohistochemistry by 1-2 orders of magnitude. In addition, the assay facilitates the biological characterization and staging of carcinoma cells.
Owner:MENARINI SILICON BIOSYSTEMS SPA

Magnetic nanoparticles, magnetic detector arrays, and methods for their use in detecting biological molecules

Magnetic nanoparticles and methods for their use in detecting biological molecules are disclosed. The magnetic nanoparticles can be attached to nucleic acid molecules, which are then captured by a complementary sequence attached to a detector, such as a spin valve detector or a magnetic tunnel junction detector. The detection of the bound magnetic nanoparticle can be achieved with high specificity and sensitivity.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Large-area nanoenabled macroelectronic substrates and uses therefor

A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
Owner:ONED MATERIAL INC

Method for Fabricating a Long-Range Ordered Periodic Array of Nano-Features, and Articles Comprising Same

A long range, periodically ordered array of discrete nano-features (10), such as nano-islands, nano-particles, nano-wires, non-tubes, nano-pores, nano-composition-variations, and nano-device-components, are fabricated by propagation of a self-assembling array or nucleation and growth of periodically aligned nano-features. The propagation may be induced by a laterally or circularly moving heat source, a stationary heat source arranged at an edge of the material to be patterned (12), or a series of sequentially activated heaters or electrodes. Advantageously, the long-range periodic array of nano-features (10) may be utilized as a nano-mask or nano-implant master pattern for nano-fabrication of other nano-structures. In addition, the inventive long-range, periodically ordered arrays of nano-features are useful in a variety of nanoscale applications such as addressable memories or logic devices, ultra-high-density magnetic recording media, magnetic sensors, photonic devices, quantum computing devices, quantum luminescent devices, and efficient catalytic devices.
Owner:RGT UNIV OF CALIFORNIA

Ternary oxide nanostructures and methods of making same

A single crystalline ternary nanostructure having the formula AxByOz, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Ti, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and / or dislocations.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Large-area nanoenabled macroelectronic substrates and uses therefor

A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
Owner:ONED MATERIAL INC

Rotating and pivoting magnet for magnetic navigation

A magnet assembly comprising a magnet mounted for pivoting about a first axis spaced from the magnet, and rotating about a second axis that is perpendicular to and intersects with the first axis. The magnet comprising a plurality of segments each with a magnetization direction such that through a combination of pivoting and rotating the magnet projects a magnetic field in any direction at an operating point spaced from the front of the assembly. The segmented construction with segments of different magnetization directions allows small changes in the orientation of the magnet to substantially change the magnet field direction at a system operating point.
Owner:STEREOTAXIS

Apparatus and method for generating a magnetic field

A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The magnetic tip allows the position and orientation of the tip to be determined without the use of x-rays by analyzing a magnetic field. The magnetic tip further allows the tool tip to be pulled, pushed, turned, and forcefully held in the desired position by applying an appropriate magnetic field external to the patient's body. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
Owner:NEURO KINESIS CORP

Non-alloying core shell nanoparticles

The present invention relates composite core / shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core / shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core / shell nanoparticle conjugates.
Owner:NORTHWESTERN UNIV

Electromagnet and magnetic field generating apparatus

An electromagnet comprises a pair of magnetic pole 1a and 1b, a return yoke 3, exciting coils 4 and 5, etc. In an interior portion of a magnetic pole, plural spacers 2a-2g are provided putting side by side in a horizontal direction. Each of the spaces 2a-2g is an air layer and a longitudinal cross-section is a substantially rectangular shape and the space has a lengthily extending slit shape in a vertical direction against a paper face in FIG. 1. The plural spaces are mainly arranged toward a right side from a beam orbit center O and an interval formed between adjacent spaces is narrower toward the right side. The electromagnet having a simple magnetic pole structure and a wide effective magnetic field area in a case where a maximum magnetic field strength is increased can be secured.
Owner:HITACHI LTD +1

Flexible magnetic interconnects

A flexible magnetic interconnect is disclosed. In one embodiment, an apparatus includes a module having a recess therein. A magnetic structure is moveable within the recess and a flexible circuit cooperates with the module to retain the magnetic structure within the recess. Movement of the magnetic structure is caused by magnetic attraction between the magnetic structure and an external magnetic structure. The flexible circuit includes a compliant contact, which changes shape by movement of the magnetic structure.
Owner:APEX TECH INC

Coated, resuspendable magnetically responsive, transition metal oxide particles and method for the preparation thereof

The invention relates to an improved method for the manufacture of magnetically responsive particles, also called ferrofluids. The improved method involves a heat treatment step, which may occur at various times during the preparation of the materials, including during subdivision of the magnetic starting material, during the addion of a coating material, after formation of a magnetically responsive particle, or some combination thereof. The materials formed by such a process have numerous advantages over materials formed by other processes, including enhanced salt stability, increased coating uptake, and increased binding capacity. These ferrofluids have applications in a variety of preparative and diagnostic techniques, including immunoassay, cell separations, toxicity testing, food testing, environmental analysis, and MRI.
Owner:JANSSEN DIAGNOSTICS LLC

Microfabricated system for magnetic field generation and focusing

A method of forming, in or on a Si substrate, planar micro-coils with coil windings of high aspect ratio (>3) and a wide variety of geometric shapes. The micro-coils may be formed on a Si substrate and be embedded in a dielectric, or they may be formed in trenches within a Si substrate. The micro-coils may have field enhancing ferromagnetic pillars rising above the micro-coil plane, formed at positions of maximum magnetic field strength and the micro-coils may also include magnetic layers formed beneath the substrate and contacting the pillars to form a substantially closed pathway for the magnetic flux. The substrate may be thinned to membrane proportions. These micro-coils produce strong magnetic fields with strong field gradients and can be used in a wide variety of processes that involve the exertion of strong magnetic forces at small distances or the creation of magnetic wells for trapping and manipulating small particles.
Owner:AGENCY FOR SCI TECH & RES +1

Bioprinted Nanoparticles and Methods of Use

The present invention provides compositions and methods that combine the initial patterning capabilities of a direct cell printing system with the active patterning capabilities of magnetically labeled cells, such as cells labeled with superparamagnetic nanoparticles. The present invention allows for the biofabrication of a complex three-dimensional tissue scaffold comprising bioactive factors and magnetically labeled cells, which can be further manipulated after initial patterning, as well as monitored over time, and repositioned as desired, within the tissue engineering construct.
Owner:DREXEL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products