Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2600 results about "Superconducting Coils" patented technology

The coil windings of a superconducting magnet are made of wires or tapes of Type II superconductors (e.g.niobium-titanium or niobium-tin). The wire or tape itself may be made of tiny filaments (about 20 micrometers thick) of superconductor in a copper matrix.

Suspending, guiding and propelling vehicles using magnetic forces

Magnetic levitation methods and apparatus use arrays of vehicle magnets to provide three forces: suspension, guidance and propulsion. The magnets, which can be permanent magnets or superconducting magnets operating in the persistent current mode, have associated control coils that allow the magnets to provide a controllable attractive force to a laminated steel rail. The control coils adjust the gap between the magnets and the rails so as to be in stable equilibrium without requiring significant power dissipation in the control coils. These same magnets and steel rails also provide lateral guidance to keep the vehicle on the track and steer the vehicle on turns. The suspension control coils can provide lateral damping by means of offset magnets in the suspension arrays. Windings in transverse slots in the steel rails are excited with currents that react against the field produced by the vehicle magnets to create vehicle propulsion. The magnet size is adjusted to provide negligible cogging force even when there are as few as three winding slots per wavelength along the rail. Means are used to mitigate end effects so that a multiplicity of magnet pods can be used to support the vehicle.
Owner:MAGNEMOTION INC

Cooling methods

A superconducting system comprises a superconducting coil (3) mounted in a support (12). The coil is surrounded by a cryogen chamber (17) which is located radially outwardly from the coil (3) on the other side of the support (12). The cryogen chamber is in fluid communication with a cryogen recondensing unit (33) whereby vaporized cryogen may flow from the cryogen chamber (17) to the cryogen recondensing unit (33) to be recondensed in use before returning to the cryogen chamber. Thermally conductive means (25) is arranged to facilitate heat transfer from the superconducting coil (3) to the cryogen chamber (17) to vaporize cryogen contained therein in use and thereby remove heat from the coil. The thermally conductive means (25) is highly thermally conductive at cryogenic temperatures. In use, the highly thermally conductive means (25) facilitates transfer of heat from the coil (3) to the interior of the cryogen chamber (17) to vaporize cryogen located therein. A thermal conduction path is therefore used to transfer heat from the coil to the cryogen in the cryogen chamber. Cryogen vaporized in the cryogen chamber then flows to the cryogen recondensing unit (33) to be recondensed before returning to the chamber, while the vaporized cryogen acts as the heat transfer medium over the longer distance between the cryogen chamber and the recondensing unit.
Owner:TESLA ENG

Cooling system and method for cooling superconducting magnet devices

A cooling system and method for cooling superconducting magnet coils are provided. One magnet system for a superconducting magnet device includes a cooling system having at least one coil support shell, a plurality of superconducting magnet coils supported by the at least one coil support shell and a plurality of cooling tubes thermally coupled to the at least one coil support shell. The magnet system also includes a cryorefrigerator system fluidly coupled with the plurality of cooling tubes forming a closed circulation cooling system.
Owner:GENERAL ELECTRIC CO

Superconductive magnet including a cryocooler coldhead

A zero boiloff cryogen cooled recondensing superconducting magnet assembly including superconducting magnet coils suitable for magnetic resonance imaging including a cryogen pressure vessel to contain a liquid cryogen reservoir to provide cryogenic temperatures to the magnet coils for superconducting operation; a vacuum vessel surrounding the pressure vessel and spaced therefrom; a first thermal shield surrounding and spaced from the pressure vessel; a second thermal shield surrounding and spaced from the first thermal shield and intermediate the vacuum vessel and the first shield; a cryocooler thermally connected by a first and a second thermal interface to the first and second thermal shields, respectively; a recondenser positioned in the space between the pressure vessel and the first thermal shield and thermally connected by a thermal interface to the cryocooler to recondense, back to liquid, cryogen gas provided from the pressure vessel; and means for returning the recondensed liquid cryogen the pressure vessel; wherein the second thermal shield surrounding the first thermal shield reduces a radiation heat load from the first thermal shield to the pressure vessel lowering boiloff of cryogen gas under conditions of failure or power off of the cryocooler.
Owner:GENERAL ELECTRIC CO

Quench protection of HTS superconducting magnets

A method of constructing a superconducting coil. The method includes embedding a plurality of heater elements throughout a superconducting coil. The heater elements are positioned according to a predetermined distribution and substantially in thermal contact with the coil for heating the coil in response to a quench condition. Other aspects of the invention involve an active protection circuit and a high temperature superconductor magnet that includes such an active protection circuit for internally dissipating stored magnetic energy in the event of a quench.
Owner:FLORIDA STATE UNIV RES FOUND INC

Low loss joint for superconducting wire

A device and method for making a persistent joint allowing end terminations of superconducting MgB2 wire to be joined with a superconducting bridge. Superconducting electromagnetic coils may be joined in series or joining of coil assemblies to current sources and the two ends of a persistent switch. The device includes wire filaments with end preparation exposing reacted MgB2, inserted into a block and surrounded with Mg+B and / or MgB2 in powder, solid, slurry or sol-gel form and subsequently reacted to establish a bridge of superconducting MgB2 electrically connecting the superconducting MgB2 wires. Autonomous operation of the superconducting background magnet coils in magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) devices are allowed, or similar devices where autonomous operation of an MgB2 based superconducting magnet is required. The low resistant joint will also be beneficial for other superconducting applications such as fault current limiters, motors, generators, etc.
Owner:HYPER TECH RES

Apparatus and method for cooling a superconducting magnetic assembly

A superconducting magnet assembly and method of cooling a superconducting magnet assembly. An embodiment of the method of manufacturing a superconducting magnet assembly includes: providing a housing configured about a vacuum reservoir; forming a coil former; surrounding the coil former with a thermal shield; locating the thermal shield in the vacuum reservoir; positioning a superconducting magnet about the coil former, wherein the superconducting magnet is configured about a central core to receive an object; providing a second vacuum reservoir having a cryogen reservoir therein; providing two two-phase heat transfer devices wherein each comprises tubing having an evaporator region and a condenser region; thermally connecting the evaporator region of one of the heat transfer devices with the coil former and / or the superconducting magnet and the evaporator region of the other two-phase heat transfer device with the thermal shield; and thermally connecting a cryocooler to the cryogen reservoir and to the condensing region of both heat transfer devices.
Owner:GENERAL ELECTRIC CO

Method and apparatus for a superconducting generator driven by wind turbine

A generator including: an annular armature connectable to rotate with blades of a wind turbine; an annular stationary field winding assembly coaxial with the armature and separated by a gap from an inside surface of the armature, wherein the field winding include superconducting coils, and support structure connectable to an upper region of a tower of the wind turbine.
Owner:GENERAL ELECTRIC CO

Hybrid heat pump / refrigerator with magnetic cooling stage

A device for transporting heat from a cold reservoir to a warm reservoir, in which at least two cyclic processes are employed for transporting heat thereby absorbing work, of which at least one is a regenerative cyclic process, and at least one is a magnetocaloric cyclic process, wherein the regenerative cyclic process has a working fluid and a heat storage medium, is characterized in that the heat storage medium of the regenerative cyclic process comprises a magnetocaloric material for the magnetocaloric cyclic process, wherein the magnetocaloric material is in a regenerator area with a cold end and a warm end, the working fluid of the regenerative cyclic process additionally serving as a heat transfer fluid for the magnetocaloric cyclic process. This produces a compact device with low apparative expense, wherein the power density and also the efficiency of the device are increased. The device may advantageously be used for cooling a superconducting magnet configuration.
Owner:BRUKER BIOSPIN

Conduction cooling superconducting magnet dewar convenient for loading and unloading

The invention relates to a conduction-cooled superconducting magnet Dewar with easy loading-unloading, comprising a Dewar cylinder. The conduction-cooled superconducting magnet Dewar is characterized in that the Dewar cylinder is a hollow annular cylinder, the middle of the annular cylinder is provided with a room temperature hole, an annular copper cold shield is arranged in the Dewar cylinder, a refrigerator and a superconducting magnet are arranged in the copper cold shield, a vacuum pumping port is arranged on the Dewar cylinder, a measuring device is arranged on an upper cover of the Dewar cylinder and the Dewar cylinder is in a vacuum state. Compared with the prior Dewar container, the conduction-cooled superconducting magnet Dewar is simpler, has small conduction heat leakage, and has the advantages of easy installation and disassembly; the refrigerator is used for conducting and cooling without a low temperature liquid (such as liquid helium and so on) cooling system; because of simple and safe system, a first-level cold junction of the refrigerator is operated under a temperature of 77K, thereby realizing heat sink of the copper cold shield, an electric lead and a support device; the first-level cold junction of the refrigerator adopts soft connection, thereby reducing temperature increment of the magnet due to vibration of the refrigerator; and the conduction-cooled superconducting magnet Dewar has the advantages of easy operation of manufacture, processing and installation, and is applicable to scale production.
Owner:INST OF PLASMA PHYSICS CHINESE ACAD OF SCI

Superconducting coil support structures

Support structures (100) for attaching superconducting conductors (106) to a rotor (50) of an electrical machine (10). The support structures (100) are mechanically configured to transfer loads exerted on the superconducting conductors (106) during both normal and transient operation of the rotor (50). The mechanical configuration and material of the support structures (100) further present a thermal path that is longer than the physical distance between the superconducting conductors (106) and the rotor (50) thereby minimizing heat flow from the warm rotor (50) to the cold superconducting conductors (106).
Owner:SIEMENS ENERGY INC +4

Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet

A cold mass for a superconducting magnet system in one example comprises a superconducting magnet, a cryogenic cooling circuit, and a magnet and cooling circuit support. The magnet and cooling circuit support comprises a substantially conductive coupler that serves to couple the superconducting magnet and the cryogenic cooling circuit. The cryogenic cooling circuit comprises an inlet path and a substantially upward outlet path. The inlet path avoids direct conductive thermal engagement with the substantially conductive coupler. The substantially upward outlet path comprises direct conductive thermal engagement with the substantially conductive coupler.
Owner:GENERAL ELECTRIC CO

NMR spectrometer with common refrigerator for cooling an NMR probe head and cryostat

ActiveUS20060130493A1Optimum adjustment of performanceUtilization capacitySolidificationLiquefactionCryocoolerRefrigerated temperature
An NMR apparatus comprising a superconducting magnet coil system, in particular, an NMR spectrometer, with a cryostat which comprises an outer shell and a helium tank which contains the magnet coil system, and with an NMR probe head which is disposed in a room temperature bore of the cryostat and which contains a cooled RF resonator for receiving NMR signals from a sample to be examined and is cooled, together with the NMR probe head, by a cold head of a common, multi-stage, compressor-operated refrigerator, is characterized in that the cold head of the refrigerator is disposed in a neck tube, the upper end of which is connected to the outer shell of the cryostat and the lower end of which is connected to the helium tank in such a manner that the neck tube and the helium tank delimit a helium space, with at least one cooling circuit with thermally insulated transfer lines being provided between the helium space and the NMR probe head, wherein the cryogenic helium in the helium space is used as coolant for the cooling circuit. This produces an NMR apparatus which cools a plurality of elements at different temperature levels using only one single cryocooler to optimally utilize the cooling resources of the refrigerator.
Owner:BRUKER BIOSPIN

Superconducting magnet apparatus and maintenance method of refrigerator for the same

A superconducting magnet apparatus includes superconducting coils in a vacuum vessel. The vacuum vessel is provided with a refrigerator for cooling the superconducting coils. The refrigerator includes a motor drive, displacers, and a cooling cylinder accommodating the displacers such that the displacers may reciprocate therein. The vacuum vessel has a sleeve for accommodating the cooling cylinder while isolating them from its vacuum area, the sleeve having an opening near the wall of the vacuum vessel. A first flange is provided at an opening in the cooling cylinder for inserting the displacers therein. The motor drive is attached to the first flange, with the displacers being inserted therein. The first flange has a cylindrical portion to be inserted in the sleeve to seal the space in the sleeve. The motor drive and the displacers can be removed, while leaving the first flange and the cooling cylinder unremoved.
Owner:SUMITOMO HEAVY IND LTD

Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas

ActiveUS20110219785A1Rapid initial cool-downMinimal, if any, helium replenishmentSolidificationLiquefactionCounter flowTemperature conditioning
A cryostat for providing temperature regulation, one purpose being measuring physical properties of materials, the cryostat employing a superconducting magnet assembly for generating variable magnetic field in the sample space and a cryogenic cooler for cooling the sample space. The cryogenic cooler chamber configuration provides for efficient heat exchange between different stages of the cryogenic cooler without the need for physical heat links. This construction enables selective delivery of cooling power from the cryogenic cooler to the desired areas within the cryostat without using flexible physical thermal links. A counter flow exchanger and ambient temperature valves facilitate efficient use of the cryogenic cooler stages. The removal of large heat load generated by the superconducting magnet while operating in the sweeping mode is achieved, in part, by employing a solid plate thermal coupling element between the cryogenic cooler chamber and the magnet assembly.
Owner:QUANTUM DESIGN

Automated superconducting magnet ramp-up system and method

The present invention provides for a novel technique for placing superconducting magnets into operation. For example, the technique provides for automatically controlling ramp-up of a superconducting magnet. In one aspect, the technique includes connecting a power supply to the magnet, determining constraining parameters of the ramp,-up automatically applying power to the magnet, automatically controlling the ramp-up based on the constraining parameters, and wherein the ramp-up is complete upon reaching a predetermined value of a target parameter.
Owner:GE MEDICAL SYSTEMS INC

Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

PCT No. PCT / US96 / 09906 Sec. 371 Date Mar. 9, 1998 Sec. 102(e) Date Mar. 9, 1998 PCT Filed Jul. 6, 1996 PCT Pub. No. WO96 / 41362 PCT Pub. Date Dec. 19, 1996Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and / or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.
Owner:ARCH DEVMENT

Superconducting magnet split cryostat interconnect assembly

A multi purpose interconnect assembly between upper and lower helium vessels in a recondensing superconducting magnet to provide isothermal connections to extend the ride-through period, and to provide for helium liquid and gas passage, electrical interconnections, and to accommodate differential thermal contraction and expansion.
Owner:GENERAL ELECTRIC CO

Preparation method for NbTi/Cu multi-core composite superconducting wire with rectangular section

The invention discloses a preparation method for an NbTi / Cu multi-core composite superconducting wire with a rectangular section, which comprises the following steps of: firstly, assembling an NbTi bar, a pure Nb inner pipe and an oxygen-free copper sheath in turn to form an NbTi / Cu composite sheath, sealing an upper end cap and a lower end cap of the NbTi / Cu composite sheath through vacuum welding, and then performing primary extrusion to obtain an NbTi / Cu composite bar; secondly, drawing and scaling the composite bar, and keeping on drawing the composite bar to obtain a hexagonal core rod, and performing assembling for the second time; and thirdly, performing vacuum solder sealing, hot isostatic pressing, secondary extrusion, bar drawing and scaling on the sheath which is assembled in the second time to finally obtain the NbTi / Cu multi-core composite superconducting wire with the rectangular section. The preparation method has the advantages of simple process flow, low preparation cost and good preparation effect, improves the fill factor among windings in the process of coiling a superconducting magnet but simultaneously keeps high critical current density for the wire, and overcomes the defects that the conventional four-high mill or forming roll mill is unevenly stressed, is difficult to process and the like in the rolling process.
Owner:NORTHWEST INSTITUTE FOR NON-FERROUS METAL RESEARCH

Systems, methods and apparatus of an actively shielded superconducting magnet drift compensation coil

ActiveUS7098663B1Reduce rotReduction in fringe field bloomMagnetic measurementsMagnetsSuperconducting CoilsInductance
Systems, methods and apparatus are provided through which in some embodiments drift of a magnetic field of a magnetic resonance imaging (MRI) system is reduced by including a drift compensation coil which accumulates current at a rate proportional to the decay in the primary coil via its electromagnetic mutual inductance to the primary coil. In some embodiments, the drift compensation coil includes reverse turns at an outer radius, to significantly reduce any exacerbation of the fringe field during a quench of the primary coil. In further embodiments, the actively shielded drift compensation coil is complemented with a non-coupling external disturbance shield coil.
Owner:GENERAL ELECTRIC CO

Compact superconducting magnet configuration with active shielding having a shielding coil contributing to field formation

A superconducting magnet configuration (4; 14) for generating a homogeneous magnetic field B0 in an examination volume (4b), has an interior radial superconducting main field coil (1) which is disposed rotationally symmetrically about an axis (z-axis) and an oppositely driven coaxial radially exterior superconducting shielding coil (2) is characterized in that the magnet configuration (4; 14) consists of the main field coil (1), the shielding coil (2), and a ferromagnetic field formation device (3; 18), wherein the ferromagnetic field formation device (3; 18) is located at the radially inside of the main field coil (1), the main field coil (1) consisting of an unstructured solenoid coil or of several radially nested unstructured solenoid coils (15, 16) which are driven in the same direction, the axial extent Labs of the shielding coil (2) being smaller than the axial extent Lhaupt of the main field coil (1), wherein the axial magnetic field profile (5) generated by the main field coil (1) and the shielding coil (2) during operation has a minimum of the field strength along the axis (z-axis) in the center (4a) and a maximum of the field strength on each side of the center (4a), and wherein the axial magnetic field profile (6) generated by the ferromagnetic field formation device (3; 18) during operation has a maximum of the field strength along the axis (z-axis) in the center (4a) and a minimum of the field strength on each side of the center (4a). The magnet configuration in accordance with the invention has a very simple structure.
Owner:BRUKER BIOSPIN

Laser-Accelerated Proton Therapy Units And Superconducting Electromagnet Systems For Same

Compact particle selection and collimation devices are disclosed for delivering beams of protons with desired energy spectra. These devices are useful with laser-accelerated proton therapy systems, in which the initial protons have broad energy and angular distributions. Superconducting magnet systems produce a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. The simulation of proton transport in the presence of the magnetic field shows that the selected protons are successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. Dose distributions are also provided using Monte Carlo simulations of the laser-accelerated proton beams for radiation therapy applications.
Owner:INST FOR CANCER RES

Superconducting switch, superconducting magnet and MRI

A superconducting switch is provided in which the structural strength of the superconducting switch is kept, and thermal efficiency between a superconducting film and a heater is high when an ON state (superconducting state) and an OFF state (normal conducting state) of the superconducting switch are switched. The superconducting switch includes a substrate, a heater for generating heat by energization, a conductive film, and a MgB2 film evaporated on the conductive film. The heater, the conductive film and the MgB2 film are laminated in this order on one surface of the substrate.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products