Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3710 results about "Electrical element" patented technology

Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases infinitesimal elements are used to model the network, in a distributed-element model.

Self-regulating transcutaneous energy transfer

A rechargeable battery system and method are disclosed, in which an implantable medical device (IMD) regulates its transfer of energy from a separate charger unit. For recharging, a charger unit is brought into proximity to the implanted device. An oscillating current is generated in a primary coil, located in the charger. By inductive coupling through an oscillating magnetic field, an alternating current is generated in a secondary coil, which is implanted in or near the implanted device. The alternating current then passes through a half-wave or full-wave rectifier to form a one-sided current, then passes through a regulator to form an essentially direct current, which is in turn directed to the rechargeable battery in the implanted device. The secondary coil has a controllable damped resonant frequency, which can be dynamically tuned away from the driving frequency of the primary coil by a variable resistor and/or by varying a duty cycle of a rapidly switched electrical element. If a control loop in the implant senses that more power is being received at the second coil than is actually being used to recharge the battery, the control loop temporarily changes the variable resistance. When this happens, the resonant frequency of the secondary coil is detuned slightly away from the driving frequency, so that less of the incoming power is absorbed by the secondary coil. Alternatively, the secondary coil may be temporarily short-circuited. With less or no excess power entering the circuitry of the implant, the problem of overheating is mitigated.
Owner:ST CROIX MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products