Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2812 results about "Membrane surface" patented technology

Flexible force or pressure sensor array using semiconductor strain gauge, fabrication method thereof and measurement method thereof

The force or pressure sensor array of the present invention effectively has both flexibility and elasticity. Since the substrate itself is a kind of a polymer material, the substrate can be bent or expanded. Although silicon, which is a material of the semiconductor strain gauge, is easily broken and solid, mechanical flexibility can be secured if it is fabricated extremely thin. To this end, particularly, disclosed is a flexible force or pressure sensor array using semiconductor strain gauges 110, the sensor array comprising: a substrate 10 including: the semiconductor strain gauges 110 in which a plurality of elements formed in a certain array pattern is deformed by force or pressure, a pair of polymer film layers 120 and 130 having film surfaces contacted facing each other and containing the semiconductor strain gauge 110 between the film surfaces contacted with each other, and a pair of signal line layers formed on top and bottom surfaces of an insulating layer using either of the pair of polymer film layers 120 and 130 as the insulating layer and connected to the elements 111 of the array pattern to form electrodes, for fetching deformation signals outputted due to deformation of the elements 111 to outside; and a pair of elastomer layers 20 and 30 formed on both sides of the substrate 10 to contain the substrate 10 inside.
Owner:KOREA RES INST OF STANDARDS & SCI

Method of in-situ generation of nano particle on separating membrane surface

The invention relates to the technical field of separating membranes, and in particular to a method of in-situ generation of a nano particle on a separating membrane surface. The method comprises the following steps: conducting surface modification on a basic separating membrane surface for more than once, and conducting in-situ generation of the nano particle for more than once on the separating membrane surface subjected to the surface modification, wherein the special points are that the surface modification refers to the following steps: soaking the basic separating membrane in dopamine buffer salt solution with the concentration of 0.001 mg / mL-100 mg / mL and the PH value of 7-12, modifying for 1 min-7 d under the condition that oxygen or oxidant is participated to form a poly-dopamine layer on the basic separating membrane surface; the in-situ generation of the nano particle refers to the following steps: soaking the separating membrane with the poly-dopamine layer generated on the surface in metal salt solution with the concentration of 0,001-10,000 mM / L for 1 min-300 d to generate the nano particle in situ, or accelerating the in-situ generation of the nano particle under the action of reducer. Compared with the prior art, the preparation method is simple and easy to be operated, economic, efficient and environmental-friendly, and facilitates industrialisation.
Owner:山东净泽膜科技有限公司

Method for modifying polyvinylidene fluoride ultrafiltration membrane by amphiphilic co-polymer

The invention discloses a method of producing the hyperfiltration membrane of amphiphilic copolymer modified polyvinylidene fluoride, comprising the following steps: 1) mixing polyvinylidene fluoride, poly (methyl methacrylate - monomethyl ether polyoxyethylene methyl methacrylate), additives, non-solvent and solvent to form the casting film solution; 2) making the casting film solution into the polyvinylidene fluoride membrane by using the film forming machine and then soaking in the coagulation bath; 3) conducting the posttreatment of hydrophilicity; 4)obtaining the hydrophilic polyvinylidene fluoride ultrafiltration membrane after cleaning and drying. The method is characterized in that the brush shape, chain ball shape or dumbbell shape amphiphilic copolymer are mixed with the polyvinylidene fluoride to produce the polyvinylidene fluoride hyperfiltration membrane with hydrophilicity, anti-pollution, large flux and high retention rate by adopting the solution phase conversion method. The method has the advantages that the obtained membrane is provided with dozens to hundreds nanometer of particular densified hydrogel surface layers, the contact angle of the membrane surface can be reduced below 60 degrees and can be lowered to 0 degree within tens of seconds, the water flux can reach 1000L /m<2>/ h (0.1Mpa) or above, the retention rate of BSA can reach 90% or more and the recovery rate of water cleaning flux can reach 90% or higher.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products