Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

92 results about "Fluid compartments" patented technology

The human body and even its individual body fluids may be conceptually divided into various fluid compartments, which, although not literally anatomic compartments, do represent a real division in terms of how portions of the body's water, solutes, and suspended elements are segregated. The two main fluid compartments are the intracellular and extracellular compartments. The intracellular compartment is the space within the organism's cells; it is separated from the extracellular compartment by cell membranes.

Device employing gas generating cell for facilitating controlled release of fluid into ambient environment

A device for controllably releasing a fluid into an ambient environment. According to a particular embodiment of the present invention, the device comprises a housing having a fluid compartment and an orifice compartment disposed adjacent thereto and in fluid communication therewith via an orifice. The fluid compartment contains the fluid for release to the ambient environment. The orifice compartment includes a fluid exit opening covered by a removable sealing element and contains an initial quantity of fluid when the device is in an inactivated state. A fluid restrictor is disposed adjacent the orifice to restrict fluid flow from the fluid compartment into the orifice compartment in the inactivated state. A gas-generating cell is in selective communication with the fluid compartment such that gas generated by the cell is directed into the fluid compartment when the device is in an activated state. A fluid membrane is disposed between the gas-generating cell and the fluid compartment that allows the gas generated by the cell to pass therethrough to the fluid compartment in the activated state while preventing fluid within the fluid container from passing therethrough to the cell in the inactivated state. The device is activated by removing the sealing element to allow the initial quantity of fluid to exit out of the orifice compartment via the fluid exit opening and activating the cell to generate gas and force fluid from the fluid compartment to the orifice compartment and out the fluid exit opening in a controlled manner.
Owner:MICROLIN

Device employing gas generating cell for facilitating controlled release of fluid into ambient environment

A device for controllably releasing a fluid into an ambient environment. According to a particular embodiment of the present invention, the device comprises a housing having a fluid compartment and an orifice compartment disposed adjacent thereto and in fluid communication therewith via an orifice. The fluid compartment contains the fluid for release to the ambient environment. The orifice compartment includes a fluid exit opening covered by a removable sealing element and contains an initial quantity of fluid when the device is in an inactivated state. A fluid restrictor is disposed adjacent the orifice to restrict fluid flow from the fluid compartment into the orifice compartment in the inactivated state. A gas-generating cell is in selective communication with the fluid compartment such that gas generated by the cell is directed into the fluid compartment when the device is in an activated state. A fluid membrane is disposed between the gas-generating cell and the fluid compartment that allows the gas generated by the cell to pass therethrough to the fluid compartment in the activated state while preventing fluid within the fluid container from passing therethrough to the cell in the inactivated state. The device is activated by removing the sealing element to allow the initial quantity of fluid to exit out of the orifice compartment via the fluid exit opening and activating the cell to generate gas and force fluid from the fluid compartment to the orifice compartment and out the fluid exit opening in a controlled manner.
Owner:MICROLIN

Modular surface mount fluid system

The present invention provides for a bridge fitting for use in a fluid manifold system for being in fluid communication with two or more surface mounted fluid components having an inlet port and an adjacent outlet port. The invention also provides for a housing with a first port connected to a second port, with an internal fluid passageway joining the first and second ports and at least one projection extending from the housing. The bridge fittings may be mounted in a channel block having a groove and an aligned hole for receiving the projection. Another embodiment of the invention provides for a modular surface mount check valve with a valve body having a mounting flange connected thereto, the flange being substantially planar and having an inlet passage located about the center of the flange and an outlet passage located adjacent the inlet passage. The body further comprises a valve chamber in fluid communication with the inlet passage and the outlet passage, the chamber further comprising a valve seat formed at the juncture of the inlet passage and the chamber, and a poppet positioned in the chamber, and a spring mounted in the valve chamber for biasing the poppet towards the valve seat. The invention also provides an air actuated surface mount flow control valve comprising a valve body having a mounting flange connected thereto and the flange being substantially planar and having an inlet passage located about the center of the flange and an outlet passage located adjacent the inlet passage, the body further comprising a cavity in fluid communication with the inlet passage and the outlet passage, a stem positioned in the cavity, and a spring mounted in the cavity for biasing a first end of the stem in sealing engagement with the inlet passage and the outlet passage, the stem further comprising an internal fluid passageway in fluid communication with an actuator fluid compartment located under a lower surface of the stem, and the external source of pressure.
Owner:SWAGELOK CO

Lubrication system valve

A fluid scavenging system is provided for a lubrication system including a gas turbine engine having bearing compartments. A valve includes a housing with an outlet and a plurality of fluid inlets respectively in fluid communication with the bearing compartments. The valve includes a rotationally driven member arranged within the housing with the member having a plurality of ports arranged thereon each defining an arcuate slot. Each of the ports are selectively in fluid communication with one of the fluid inlets through the arcuate slot during rotation of the member for selectively permitting fluid flow between the opening of one of the fluid inlets through one of the corresponding ports in the member. A fluid pump is fluidly connected to the outlet for drawing fluid from each of the plurality of fluid compartments during fluid rotation of the member. The driven member rotates about an axis 360°, and preferably, the ports are respectively aligned with the fluid inlets for approximately at least 360° such that the pump does not run dry. The arcuate slots may overlap during a range of degrees such that more than one compartment is scavenged. The size of the arcuate slot and degrees through which the arcuate slot is in communication with its respective inlet determines the duration that a particular bearing compartment is scavenged and the volume of bearing fluid that may be removed from the compartment.
Owner:HAMILTON SUNDSTRAND CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products