Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4052 results about "Sugar nucleotide" patented technology

Nucleotides are the building blocks of nucleic acids; they are composed of three subunit molecules: a nitrogenous base, a five-carbon sugar (ribose or deoxyribose), and at least one phosphate group. A nucleoside is a nitrogenous base and a 5-carbon sugar.

Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity

InactiveUS7211414B2Extent of pyrophosphorolysis of a primer extension product is reducedImprove fidelityBiocideSugar derivativesPhosphatePhosphoric acid
Nucleotide triphosphate probes containing a molecular and / or atomic tag on a a γ and / or β phosphate group and / or a base moiety having a detectable property are disclosed, and kits and method for using the tagged nucleotides in sequencing reactions and various assay. Also, phosphate and polyphosphate molecular fidelity altering agents are disclosed.
Owner:LIFE TECH CORP

Xylo-LNA analogues

Based on the above and on the remarkable properties of the 2′-O,4′-C-methylene bridged LNA monomers it was decided to synthesise oligonucleotides comprising one or more 2′-O,4′-C-methylene-β-D-xylofuranosyl nucleotide monomer(s) as the first stereoisomer of LNA modified oligonucleotides. Modelling clearly indicated the xylo-LNA monomers to be locked in an N-type furanose conformation. Whereas the parent 2′-deoxy-β-D-xylofuranosyl nucleosides were shown to adopt mainly an N-type furanose conformation, the furanose ring of the 2′-deoxy-β-D-xylofuranosyl monomers present in xylo-DNA were shown by conformational analysis and computer modelling to prefer an S-type conformation thereby minimising steric repulsion between the nucleobase and the 3′-O-phopshate group (Seela, F.; Wömer, Rosemeyer, H. Helv. Chem. Acta 1994, 77, 883). As no report on the hybridisation properties and binding mode of xylo-configurated oligonucleotides in an RNA context was believed to exist, it was the aim to synthesise 2′-O,4′-C-methylene-β-D-xylofuranosyl nucleotide monomer and to study the thermal stability of oligonucleotides comprising this monomer. The results showed that fully modified or almost fully modified Xylo-LNA is useful for high-affinity targeting of complementary nucleic acids. When taking into consideration the inverted stereochemistry at C-3′ this is a surprising fact. It is likely that Xylo-LNA monomers, in a sequence context of Xylo-DNA monomers, should have an affinity-increasing effect.
Owner:QIAGEN GMBH

Ultra-fast nucleic acid sequencing device and a method for making and using the same

A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand, proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand. The current has characteristics representative of the component of the polymer, such as characteristics representative of the detected base of the DNA or RNA strand.
Owner:LIFE TECH CORP

Nucleic acid analysis using sequence tokens

ActiveUS7544473B2Efficiently determine variations in nucleotide sequences in the associated nucleic acid sequence fragmentsBioreactor/fermenter combinationsBiological substance pretreatmentsDon't repeat yourselfNucleic acid sequencing
The present invention provides methods and compositions for tagging nucleic acid sequence fragments, e.g., a set of nucleic acid sequence fragments from a single genome, with one or more unique members of a collection of oligonucleotide tags, or sequence tokens, which, in turn, can be identified using a variety of readout platforms. As a general rule, a given sequence token is used once and only once in any tag sequence. In addition, the present invention also provides methods for using the sequence tokens to efficiently determine variations in nucleotide sequences in the associated nucleic acid sequence fragments.
Owner:PERSONAL GENOME DIAGNOSTICS INC

Polymerases

Modified DNA polymerases have an affinity for DNA such that the polymerase has an ability to incorporate one or more nucleotides into a plurality of separate DNA templates in each reaction cycle. The polymerases are capable of forming an increased number of productive polymerase-DNA complexes in each reaction cycle. The modified polymerases may be used in a number of DNA sequencing applications, especially in the context of clustered arrays.
Owner:ILLUMINA CAMBRIDGE LTD

Toxin genes and methods for their use

Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:61-121 and 133-141, or the nucleotide sequence set forth in SEQ ID NO:1-60, 124-132, and 142-283, as well as variants and fragments thereof.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

Gapped oligonucleotides

Oligonucleotides and other macromolecules are provided which have increased nuclease resistance, substituent groups for increasing binding affinity to complementary strand, and subsequences of 2′-deoxy-erythro-pentofuranosyl nucleotides that activate RNase H. Such oligonucleotides and macromolecules are useful for diagnostics and other research purposes, for modulating the expression of a protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to oligonucleotide therapeutics.
Owner:IONIS PHARMA INC

Axmi-115, axmi-113, axmi-005, axmi-163 and axmi-184: insecticidal proteins and methods for their use

Compositions and methods for conferring insecticidal activity to host cells are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in host cells. Compositions also comprise transformed host cells. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:4, 5, 6, 13, or 14, or the nucleotide sequence set forth in SEQ ID NO:1, 2, 3, 11, or 12, as well as variants and fragments thereof.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

Soybean Transgenic Event MON87705 and Methods for Detection Thereof

The present invention provides a transgenic soybean event MON87705, and cells, seeds, and plants comprising DNA diagnostic for the soybean event. The invention also provides compositions comprising nucleotide sequences that are diagnostic for said soybean event in a sample, methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event in a sample, growing the seeds of such soybean event into soybean plants, and breeding to produce soybean plants comprising DNA diagnostic for the soybean event.
Owner:MONSANTO TECH LLC

Method of determining the nucleotide sequence of oligonucleotides and DNA molecules

The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
Owner:ALBERTA UNIV OF +1

Modified nucleotide compounds

Disclosed is a nuclease resistant nucleotide compound capable of hybridizing with a complementary RNA in a manner which inhibits the function thereof, which modified nucleotide compound includes at least one component selected from the group consisting of MN3M, B(N)xM and M(N)xB wherein N is a phosphodiester-linked modified 2′-deoxynucleoside moiety; M is a moiety that confers endonuclease resistance on said component and that contains at least one modified or unmodified nucleic acid base; B is a moiety that confers exonuclease resistance to the terminus to which it is attached; and x is an integer of at least 2.
Owner:ENZO BIOCHEM

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

PNA-DNA-PNA chimeric macromolecules

Macromolecules are provided that have increased nuclease resistance, increasing binding affinity to a complementary strand, and that activate RNase H enzyme. The macromolecules have the structure PNA-DNA-PNA where the DNA portion is composed of subunits of 2'-deoxy-erythro-pento-furanosyl nucleotides and the PNA portions are composed of subunits of peptide nucleic acids. Such macromolecules are useful for diagnostics and other research purposes, for modulating protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to therapeutics.
Owner:IONIS PHARMA INC

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

High throughput genome sequencing on DNA arrays

The present invention is directed to methods and compositions for acquiring nucleotide sequence information of target sequences using adaptors interspersed in target polynucleotides. The sequence information can be new, e.g. sequencing unknown nucleic acids, re-sequencing, or genotyping. The invention preferably includes methods for inserting a plurality of adaptors at spaced locations within a target polynucleotide or a fragment of a polynucleotide. Such adaptors may serve as platforms for interrogating adjacent sequences using various sequencing chemistries, such as those that identify nucleotides by primer extension, probe ligation, and the like. Encompassed in the invention are methods and compositions for the insertion of known adaptor sequences into target sequences, such that there is an interruption of contiguous target sequence with the adaptors. By sequencing both “upstream” and “downstream” of the adaptors, identification of entire target sequences may be accomplished.
Owner:COMPLETE GENOMICS INC

Method of determining the nucleotide sequence of oligonucleotides and DNA molecules

The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
Owner:LIFE TECH CORP

Directed evolution of grg31 and grg36 epsp synthase enzymes

Compositions and methods for conferring herbicide resistance or tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide resistance or tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also include transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding glyphosate resistance or tolerance polypeptides are provided, particularly polypeptide variants of SEQ ID NO:2 and 4. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated polynucleotides containing nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:7-28, or the nucleotide sequence set forth in SEQ ID NO:29 or 30.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

Family of pesticidal proteins and methods for their use

Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for pesticidal polypeptides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated pesticidal nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37 or 61, the nucleotide sequence set forth in SEQ ID NO:1, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, or 60, or the nucleotide sequence deposited in a bacterial host as Accession No. NRRL B-30961, B-30955, B-30956, B-30957, B-30958, B-30942, B-30939, B-30941, B-50047, B-50047, B-30959, B-30960, B-30943, B-50048, or B-50048, as well as variants and fragments thereof.
Owner:ATHENIX

Characterization of individual polymer molecules based on monomer-interface interactions

The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Axmi-027, axmi-036 and axmi-038, a family of delta endotoxin genes and methods for their use

Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NOS:2, 11 and 13, or the nucleotide sequences set forth in SEQ ID NOS:1, 10 and 12, as well as variants and fragments thereof.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

Axmi-031, axmi-039, axmi-040 and axmi-049, a family of novel delta endotoxin genes and methods for their use

Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a delta-endotoxin polypeptide are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants and bacteria. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated delta-endotoxin nucleic acid molecules are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed, and antibodies specifically binding to those amino acid sequences. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, 6, 8, 10, 12, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, or 38, or the nucleotide sequence set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, or 37, as well as variants and fragments thereof.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

GRG23 and GRG 51 genes conferring herbicide resistance

Compositions and methods for conferring herbicide resistance or tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide resistance or tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding glyphosate resistance or tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated polynucleotides comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NO:2, 4, or 6, or the nucleotide sequence set forth in SEQ ID NO:1, 3, or 5. The present invention additionally provides a method to measure enzyme kinetic activity using fluorogenic substrates.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC

Method of eliminating inhibitory/instability regions from mRNA

A method of locating an inhibitory / instability sequence or sequences within the coding region of an mRNA and modifying the gene encoding that mRNA to remove these inhibitory / instability sequences by making clustered nucleotide substitutions without altering the coding capacity of the gene is disclosed. Constructs containing these mutated genes and host cells containing these constructs are also disclosed. The method and constructs are exemplified by the mutation of a Human Immunodeficiency Virus-1 Rev-dependent gag gene to a Rev-independent gag gene. Constructs useful in locating inhibitory / instability sequences within either the coding region or the 3' untranslated region of an mRNA are also disclosed.
Owner:UNITED STATES OF AMERICA

Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules

The present invention relates to novel cationic lipids, transfection agents, microparticles, nanoparticles, and short interfering nucleic acid (siNA) molecules. The invention also features compositions, and methods of use for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and / or activity in a subject or organism. Specifically, the invention relates to novel cationic lipids, microparticles, nanoparticles and transfection agents that effectively transfect or deliver biologically active molecules, such as antibodies (e.g., monoclonal, chimeric, humanized etc.), cholesterol, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, dsRNA, allozymes, aptamers, decoys and analogs thereof, and small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), short hairpin RNA (shRNA), and RNAi inhibitor molecules, to relevant cells and / or tissues, such as in a subject or organism. Such novel cationic lipids, microparticles, nanoparticles and transfection agents are useful, for example, in providing compositions to prevent, inhibit, or treat diseases, conditions, or traits in a cell, subject or organism. The compositions described herein are generally referred to as formulated molecular compositions (FMC) or lipid nanoparticles (LNP).
Owner:SIRNA THERAPEUTICS INC

Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules

The present invention relates to novel cationic lipids, transfection agents, microparticles, nanoparticles, and short interfering nucleic acid (siNA) molecules. The invention also features compositions, and methods of use for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and / or activity in a subject or organism. Specifically, the invention relates to novel cationic lipids, microparticles, nanoparticles and transfection agents that effectively transfect or deliver biologically active molecules, such as antibodies (e.g., monoclonal, chimeric, humanized etc.), cholesterol, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, dsRNA, allozymes, aptamers, decoys and analogs thereof, and small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules, to relevant cells and / or tissues, such as in a subject or organism. Such novel cationic lipids, microparticles, nanoparticles and transfection agents are useful, for example, in providing compositions to prevent, inhibit, or treat diseases, conditions, or traits in a cell, subject or organism. The compositions described herein are generally referred to as formulated molecular compositions (FMC) or lipid nanoparticles (LNP).
Owner:SIRNA THERAPEUTICS INC

Detection of nucleic acid reactions on bead arrays

The present invention is directed to methods and compositions for the use of microsphere arrays to detect and quantify a number of nucleic acid reactions. The invention finds use in genotyping, i.e. the determination of the sequence of nucleic acids, particularly alterations such as nucleotide substitutions (mismatches) and single nucleotide polymorphisms (SNPs). Similarly, the invention finds use in the detection and quantification of a nucleic acid target using a variety of amplification techniques, including both signal amplification and target amplification. The methods and compositions of the invention can be used in nucleic acid sequencing reactions as well. All applications can include the use of adapter sequences to allow for universal arrays.
Owner:ILLUMINA INC

Novel epsp synthase genes conferring herbicide resistance

Compositions and methods for conferring herbicide resistance or tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions comprising a coding sequence for a polypeptide that confers resistance or tolerance to glyphosate herbicides are provided. The coding sequences can be used in DNA constructs or expression cassettes for transformation and expression in plants. Compositions also comprise transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated nucleic acid molecules corresponding to glyphosate resistant nucleic acid sequences are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequence shown in SEQ ID NOS:2, 4, 6, 8, 10, 12, or 14 or the nucleotide sequence set forth in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 28, 29, 30, 31, 32, 33, or 34.
Owner:BASF AGRICULTURAL SOLUTIONS SEED LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products