Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2114 results about "Iron removal" patented technology

Method for preparing porcelain granules by using fly ash

The invention discloses a method for preparing porcelain granules by using fly ash, which comprises the following steps: putting fly ash, potassium feldspar and quartz as raw materials into a ball mill respectively, dry-milling the raw materials, sieving the milled raw materials respectively, removing iron from the sieved fly ash, putting the fly ash after iron removal, the sieved potassium feldspar and quartz and kaolin into the ball mill, and wet-milling and evenly mixing the materials to form mixed slurry; and granulating the mixed slurry by adopting a pressure type spray granulator, putting the granules into an alumina crucible, placing the alumina crucible into a silicon-carbon rod resistance furnace, sintering and naturally cooling the granules, and taking out the granules to obtain the high-strength porcelain granules. The method for preparing the porcelain granules by using the fly ash is not only favorable for saving natural resources and reducing the production cost, but also favorable for environmental protection. The fly ash does not need to be crushed by a high-power crusher, and the fly ash is mixed evenly. The production process is easy to control, and has little energy consumption; the strength of the prepared fly ash porcelain granules can reach 60 to 120MPa; and the porcelain granules have good properties of light weight, high temperature resistance, corrosion resistance and the like, and can be used as a fracturing propping agent for middle and deep layer oil-gas fields.
Owner:SHAANXI UNIV OF SCI & TECH

Technique for efficiently removing iron from kaolin

The invention relates to a technique for efficiently removing iron from kaolin by magnetic separation, which is characterized by comprising the following steps: (1) purifying kaolin raw ore to obtain a magnetic separation raw material; (2) adding water to the magnetic separation raw material obtained in the step (1) to prepare a mixed slurry with the solid content of 10-20 wt%, adding sodium hexametaphosphate accounting for 0.2-0.6 wt% of the magnetic separation raw material, slurrying, stirring for 20 minutes, and passing through a 325-mesh wet sieve; (3) carrying out high-gradient magnetic separation on the undersize slurry of the 325-mesh sieve in the step (2): while controlling the magnetic field intensity of the high-gradient magnetic separator at 1.0-1.8T and the slurry flow rate at 0.8-1.8cm/s, the slurry is subjected to magnetic separation by the high-gradient magnetic separator to obtain a concentrate slurry; (4) adding alum accounting for 1-6 wt% of the concentrate slurry into the concentrate slurry obtained in the step (3), flocculating, carrying out pressure filtration, drying, and packaging to obtain a magnetic concentrate; and (5) calcining the magnetic concentrate obtained in the step (4) to obtain the calcined kaolin. The technique has the advantages of high iron removal efficiency and obvious whitening effect.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN)

High-efficiency crushing device for construction waste recovery

The invention discloses a high-efficiency crushing device for recycling construction waste, which includes a machine body, a first motor, a first connecting rod, a second connecting rod and a movable jaw plate are symmetrically arranged on the top of the body, and the first motor is driven to connect the first connecting rod. The other end of the first connecting rod is hinged with the second connecting rod, and the other end of the second connecting rod is hinged with a movable jaw plate. The bottom of the movable jaw plate is connected to the top of the body through a hinge. An inclined plate is fixed in the lower part of the body, a conveying device is arranged under the inclined plate, an iron removal device is arranged above the conveying device, an arc-shaped plate is fixed under the left end of the conveying device, and a secondary crushing device is arranged under the right end of the arc-shaped plate. The invention is provided with a first motor, a first connecting rod, a second connecting rod and a movable jaw plate, which can pre-shred the construction waste, and is provided with an iron removal device to remove metals such as steel bars and steel bars in the construction waste to avoid Damage the device and affect the service life of the device.
Owner:合肥红蔻健康管理有限公司

Method for individually processing high-iron zinc sulfide concentrate

ActiveCN103409622AThe process is highly targetedHigh enrichment ratioProcess efficiency improvementIndiumHydrometallurgy
The invention belongs to the technical field of hydrometallurgy, and particularly relates to a method for individually processing high-iron zinc sulfide concentrate. The method comprises a step of subjecting the high-iron zinc sulfide concentrate to calcination in a fluidized bed combustion boiler to obtain zinc calcine; a step of subjecting the zinc calcine to neutral leaching to produce neutral leaching solution and neutral leaching residue; a step of, after the neutral leaching residue and the high-iron zinc sulfide concentrate are mixed, successively performing reduction leaching and oxidation leaching, and circulating oxidation leaching solution to the reduction leaching to produce reduction leaching solution and silver-rich sulfur residue; a step of replacing the reduction leaching solution by using iron powder to precipitate copper and to produce copper-rich slag and solution after copper precipitation; a step of subjecting the solution after copper precipitation to pre-neutralization by using the zinc calcine, and then replacing by using zinc powder to precipitate indium and to produce indium-rich slag and solution after indium precipitation; and a step of bubbling oxygen into the solution after indium precipitation, heating and removing iron to obtain iron removal solution and hematite slag. The hematite slag can be utilized as a raw material for ironmaking. The method has strong pertinence, short technological process and high metal recovery yield, and the method is clean, efficient, energy-saving and environmental friendly. Separation and comprehensive utilization of zinc, indium, copper and iron are achieved.
Owner:KUNMING UNIV OF SCI & TECH TECH IND SALES MANAGEMENT

Technology for recovering production of electrolytic copper and zinc from smelting ash

The invention discloses a technology for recovering production of electrolytic copper and zinc from smelting ash. The technology comprises a step of smelting ash leaching, a step of copper extraction and purification through copper electrodeposition, a step of iron removal through neutralization, a step of cadmium removal, and a step of zinc extraction and purification through zinc electrodeposition. The method is characterized in that chemical components in the smelting ash are analyzed, and the smelting ash is leached by a sulfuric acid solution leaching agent; the leachate obtained after the above leaching reaction undergoes a separation operation of copper extraction and purification through the copper electrodeposition; the resultant copper extraction liquor is neutralized by high-zinc dust which is a neutralizer to remove iron; cadmium is displaced and deposited by zinc powder having a mass same with cadmium after the iron removal through the neutralization; and the zinc extraction is carried out through the zinc electrodeposition by casting zinc ingot products. The technology has a wide adaptability, adopts two steps to complete the exchange reaction of zinc oxide and copper oxide in the raw material with an acid, and adopts the high-zinc dust as the neutralizer, so the massive zinc loss caused by entrainment of routine neutralizers comprising calcium oxide and sodium hydroxide is avoided. A zinc extraction liquor obtained in the above step is purified by N235, so economy and effectiveness are realized.
Owner:江西自立环保科技有限公司

Beneficiation method of low-grade ilmenite

The invention provides a beneficiation method of low-grade ilmenite. The beneficiation method includes the following steps: screening and grading raw ore to obtain coarse grain materials and fine grain materials, subjecting the coarse grain materials and fine grain materials to first-stage iron removal respectively to obtain coarse grain iron tailings, fine grain iron tailings and inferior iron ore concentrates, subjecting the coarse grain iron tailings with iron removed to first-stage high intensity magnetic separation to obtain high intensity concentrates and tailings, subjecting the high intensity concentrates to spiral gravity to obtain gravity concentrates and subjecting the gravity concentrates to ore grinding, subjecting the fine grain iron tailings with iron removed to first-stage high intensity magnetic separation and second-stage high intensity magnetic separation sequentially to obtain high intensity magnetic concentrates and mixing the high intensity magnetic concentrates with the gravity concentrates with ore ground to be graded, and subjecting the unqualified graded mixed concentrates to ore grinding and subjecting the qualified mixed concentrates to second-stage iron removal, three-stage high intensity magnetic separation and flotation sequentially to obtain the final ilmenite concentrates. The beneficiation method of ilmenite is applicable to low-grade ilmenite. According to the beneficiation method, the quality of the ilmenite concentrates can be ensured while the recovery of the ilmenite concentrates can be improved, thereby great economic benefit can be obtained.
Owner:PANGANG GRP MINING

Production technology of high

The present invention relates to a manufacturing technique of kaolin with high viscosity and concentration. A manufacturing technique of kaolin with high viscosity and concentration is characterized by comprising following procedures: 1) manufacturing kaolin slurry J with kaolin extracted by hydraulic machinery method undergoing pulping, classification, chemical bleaching, iron removal by washing, dehydrating through pressure filters, dispersed pulping, exfoliation, vibration screen classification ; 2) spray drying and intercalation which is accomplished by a) firstly, improving product lines of a spray drying equipment, that is, adding a thermal insulation layer to a packing auger, a lift pot and a storage hopper of the spray drying equipment, and then arranging a variable frequency feeding machine communicated with a urea crusher through pipelines on the packing auger of the bottom of a spray drying mouth of the spray drying equipment; b) spray drying to achieve kaolin powder; c) intercalating intercalation agent urea with the kaolin powder through the variable frequency feeding machine with parameter of a fresh feed pump between 2 HZ and 8 HZ and with additional of mass of the intercalation agent urea between 2 percent and 10 percent of the mass of the kaolin powder; thereby getting final kaolin products with viscosity and concentration between 72 percent and 73.7 percent. The manufacturing technique can produce kaolin with high viscosity and concentration.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN) +1

Zinc hydrometallurgy production process

The invention relates to a zinc hydrometallurgy production process. According to the zinc hydrometallurgy production process provided by the invention, reduction leached supernate is subjected to preneutralization, then zinc dust is added for replacing indium, after the indium is separately removed, oxygen with the concentration being not lower than 98 percent is filled into liquid obtained after the indium is deposited, controlling the temperature in the range of 160 to 200 DEG C and controlling the pressure in the range of 1,000 to 2,000kPa, so that iron precipitates in the liquid obtained after the indium is deposited enter slags. The iron removed liquid obtained by the zinc hydrometallurgy production process has the iron content being lower than 1.2g/l, the iron removed liquid can be directly returned to be subjected to neutral leaching, and the system has stable production working conditions and is beneficial to stable production; in the iron slags obtained by the zinc hydrometallurgy production process, the zinc content is lower than 1 percent, the zinc loss is low and the zinc recovery rate is high; the iron slags can be directly sold to a cement plant and an iron and steel plant to be used as the raw materials without being stacked in a slag field, so that the zinc hydrometallurgy production process is beneficial to environmental-protection and the comprehensive utilization of resources and mineral resources are saved.
Owner:广西华锡集团股份有限公司 +1

Technology for breaking, sorting and recycling household garbage incineration slag

The invention relates to a technology for breaking, sorting and recycling household garbage incineration slag. The technology comprises the following steps: by utilizing gravitational potential energy and using water as a medium and circulating flow, vertically arranging an iron removal device, a hopper, a breaker, a magnetic separator, a jigger, screening equipment, a slag finished product collection tank, a sedimentation tank and the like which are equipment for treating the household garbage incineration slag in every link from high to low; injecting water and the garbage incineration slag into the breaker so as to form a material flow, obtaining slag materials with fine particles, light mass and optimized components through the breaker, the jigger and the screening equipment under the action of material gravity flow, filtering through the collection tank and the sedimentation tank and directly transporting the dried fine-grained slag finished product to a finished product warehouse finally; and reblending clear water obtained after sedimentation and filtration and the garbage incineration slag raw material so as to be recycled. The technology has the advantages that the exertion of gravitational potential energy is facilitated in a material treatment process, and the friction heat energy of the materials and the equipment is reduced; and the dust fog pollution in the treatment process is reduced, and environments are protected.
Owner:TONGXIANG TONGDE WALL BUILDING MATERIALS +2

Method for recycling iron from waste red mud in alumina production

The invention relates to a method for recycling iron from waste red mud in alumina production. The method is characterized in that waste red mud in alumina production is dried, the moisture content after drying ranges from 1% to 10%, the particle size of the smashed red mud is less than or equal to 0.15mm, and the red mud is manufactured into pellets of 15mm to 50mm under the pressure ranging from 10kN to 70kN. Heat produced by blast furnace gas burning is used to dry the red mud pellets to be with a moisture content less than or equal to 1%, then the dried red mud pallets, coke, limestone and dolomite are mixed according to the proportion and added into a blast furnace to be smelted directly, finally the mixture is separated through iron slag to obtain metallic iron and slag, iron can directly serve as a steel-making material, and the slag can be recycled for subsequent comprehensive utilization. According to the method, industrial waste serves as a main material, environmental pollution is reduced, and the waste can be recycled; and the method has the advantages that the quality of the recycled iron is good, the iron recovery rate is high and can achieve more than 98%, the technological process is simple, the production is easily achieved, and tailings after iron removal are easily processed.
Owner:GUIZHOU BRANCH CHINA ALUMINUM IND

Method for treating acid-washing wastewater and metallic ions in iron and steel industry

The invention provides a method for treating acid-washing wastewater and metallic ions in iron and steel industry, which comprises steps as follows: acid-washing wastewater naturally flows into a water collecting well and enters a preneutralization filter chamber under the elevation action of a pump, the preneutralization filter chamber is provided with 10-200mm limestone which is in a graded distribution mode, and after the acid-washing wastewater is preneutralized by the limestone, the pH value of the effluent water is controlled at 5-6, wherein the method provided by the invention greatly lowers the chemical expenses and operating cost as compared with the conventional method of directly adding an alkali solution; the acid-washing wastewater, which is subjected to initial pH value regulation, naturally flows into an oil separation regulating chamber, so that iron ions in the wastewater react with the alkali solution to form a precipitation mixture of ferric hydroxide, zinc hydroxide and the like; and the wastewater is elevated into a membrane solid-liquid separator to complete solid-liquid separation, so that the wastewater can be discharged after reaching the standard. The invention thoroughly solves the problems that the precipitate can not easily settle, the iron can not be easily removed, and the iron ions are dissolved out. The invention has the advantages of simple technique, high economy, low requirements for technical levels of workers, and high controllability, is reliable to operate, and has wide market prospects.
Owner:TIANJIN ACADEMY OF ENVIRONMENTAL SCI

Method for harmlessly treating aluminum ash

The invention discloses a method for harmlessly treating aluminum ash. The method comprises the following steps: (1) performing ball milling on aluminum ash to be treated in a ball mill to flattening metal aluminum in the aluminum ash into flat aluminum, and performing sieving to separate the flat aluminum from the aluminum ash to obtain first aluminum ash; (2) placing the first aluminum ash in a first container provided with an air vent, adding a first part of water into the first container, performing stirring to conduct reaction on aluminum nitride in the first aluminum ash and the water to generate ammonia and aluminum hydroxide, and discharging the ammonia through the air vent, to obtain a material left in the first container after the ammonia is discharged to be recorded as a first material; (3) performing iron removal operation on the first material, to obtain the first material subjected to iron removal to be recorded as a second material; (4) performing centrifugal dehydration operation on the second material, and then performing drying to obtain an oxide-containing mixture. According to the method, harmful substances and flammable and explosive substances in the aluminum ash are safely removed to implement harmless treatment and reclamation of the aluminum ash without heating.
Owner:佛山市吉力达铝材科技有限公司

Mineral processing technology by utilizing grade difference of potassium feldspar

The invention relates to a mineral processing technology by utilizing the grade difference of potassium feldspar. The mineral processing technology comprises the following steps that (1), potassium feldspar raw ore is mined and sorted in a separated mode according to the three classes of low-grade potassium feldspar ore, medium-grade potassium feldspar ore and high-grade potassium feldspar ore; (2), the mineral processing processes of crushing, washing, grinding for grading, desliming, and magnetic separation for deep iron removal are carried out on the low-grade potassium feldspar ore; (3), the mineral processing processes of crushing, washing, grinding for grading, desliming, flotation for mica removal and iron removal, flotation for separating feldspar from quartz, and magnetic separation for deep iron removal are carried out on the medium-grade potassium feldspar ore; (4), the mineral processing processes of crushing, washing, grinding for grading, desliming, magnetic separation for deep iron removal, wet superfine grinding and screening are carried out on the high-grade potassium feldspar ore. The different mineral processing technical schemes are adopted for the potassium feldspar ore of different grades, and the purposes of being free of environmental pollution, simplifying the production processes and efficiently developing and utilizing resources are achieved.
Owner:ZHENGZHOU MINERALS COMPOSITIVE UTILIZATION RES INST CHINESE GEOLOGICAL ACAD

Zinc smelting technology

The invention discloses a zinc smelting technology. The zinc smelting technology comprises the following step that high-iron sphalerite concentrate is subjected to calcination, neutral leaching and low-acid leaching; zinc ferrite is separated from the low-grade leaching residues by a magnetic separator and the non-magnetic leaching residues are further treated by high-acid leaching; and the zinc ferrite is decomposed into ferroferric oxide and zinc oxide by reduction roasting, and the ferroferric oxide and the zinc oxide are used respectively as a magnetic seed and a neutralizer used in a leachate magnetofluid iron-removal technology. Through combination of a wet method and a fire method, a zinc leaching rate and a lead and silver recovery rate are improved, and the calcinations of the zinc ferrite are used in the magnetofluid iron-removal technology so that an iron-removal technology cost is effectively reduced and iron residues are pure, have high iron content and are conducive to iron residue comprehensive utilization. The zinc smelting technology can efficiently prepare high-quality zinc leachate, utilize agents having wide sources and a low cost, prepare a very-low iron-content zinc leachate, greatly improve the efficiency of the zinc wet method smelting technology, basically prevent a valuable metal loss and promote resource comprehensive utilization.
Owner:CHANGSHA HASKY ENVIRONMENTAL PROTECTION TECH DEV CO LTD

Process method for ultra-high purity alumina preparation by utilizing coal ash and comprehensive utilization of ultra-high purity alumina

The invention discloses a process method for ultra-high purity alumina preparation by utilizing coal ash and comprehensive utilization of ultra-high purity alumina. In the process method, mechanical activation, flotation decarbonization, magnetic separation iron removal sulfuric acid aluminum lixiviation, solid-liquid separation, resin absorption iron removal, low-iron aluminum sulfate concentration, organic alcohol alcoholization acid washing, aluminum sulfate dehydration drying and aluminum sulfate high-temperature calcination are carried out on the coal ash so as to obtain ultra-high purity alpha-Al2O3, wherein the content of the Fe2O3 in the ultra-high purity alpha-Al2O3 is less than 2 ppm. By using the process method, the complicated purification problem that intermediate aluminum sulfate in the process of coal ash reclamation is necessarily subjected to a called Bayer circulation process is avoided, thereby simplifying the process flow, reducing the energy consumption, reducing the resource consumption and solving the technical problem of over-large secondary residue quantity accumulation. The process method has the advantages that the extraction efficiency is high, and the circulation recovery of organic alcohol and sulfuric acid and comprehensive utilization of byproducts such as resin and the like are achieved. In the invention, the process is simple, the process flow is short, the production process is easy to control, the content of the impurity in the product is low, and the quality of the product is stable.
Owner:内蒙古昶泰资源循环再生利用科技开发有限责任公司 +2

A kind of production method of silicon wafer cutting blade material

InactiveCN102285654ABalanced self-sharpeningImprove cutting abilityCycloneAutomatic control
The invention relates to a production method of a silicon wafer cutting blade material. The production method of the silicon wafer cutting blade material uses high-purity green silicon carbide as the raw material and comprises the following steps: performing jaw crushing, screening, performing automatic circulation type wet ball milling and hydraulic cyclone classification, performing automatic overflow carbon removal, performing magnetic separation to automatically remove iron, performing alkali washing, cleaning, performing overflow classification under automatic control of a programmable logic controller (PLC), centrifuging to dewater, drying, mixing, performing fine screening and the like. The silicon carbide blade material prepared by the method has equiareal shape, sharp edges and high cutting capability; the blade material particles have large specific surface area and clean appearance and high suitability to cutting fluid such as polyethylene glycol; the product ground by automatic circulation type wet ball milling and cyclone classification has more equiareal shapes, good grain shape and high yield, and overgrinding can be avoided; and automatic magnetic separation is adopted to perform acid-free iron removal, thus the method has high efficiency, environmental friendliness and high degree of automation and is suitable for large-scale production. The product ground by the method has high particle size concentration degree and good grain shape, and better cutting effect can be realized.
Owner:JIANGSU TAYAL PHOTOVOLTAIC AUXILIARY MATERIAL

Thin porcelain brick and production method thereof

ActiveCN101838140AImprove liquidityParticles are smoothCovering/liningsCellulosePyrophyllite
The invention relates to a thin porcelain brick and a production method thereof, wherein the production method comprises the following steps: 1. mixing blank raw materials comprising 4.5 to 5 percent of ball clay, 5 to 6 percent of black mud, 6 to 8 percent of Yichun kaolin, 6 to 10 percent of Beihai kaolin, 6 to 13 percent of Dehua pyrophyllite, 4 to 10 percent of Paishan pyrophyllite, 12 to 16 percent of sodium-potassium feldspar powder, 12 to 15 percent of weathered potassium feldspar, 8 to 15 percent of superfine pottery stone, 8 to 16 percent of sodium-potassium feldspar, 5.5 to 6 percent of Zhuji porcelain sand and 0.8 to 1.3 percent of lignin and lignin derivative; 2. adding water accounting for 50 to 60 percent of the weight of a powder material, 0 to 0.1 percent of polymethyl cellulose sodium (CMC) and 0.1 to 1 percent of sodium tripolyphosphate (STPP), putting into a ball mill, and controlling the ball milling fineness to have 0.5 to 1 percent of sieve residue through a 325-mesh sieve; 3. preparing the powder material containing 5 to 7 percent of water through iron removal, sieving and spray drying of the obtained mud; 4. ageing the powder material for 24 hours, then molding through pressing, and drying at the temperature of 150 to 200 DEG C to enable the water content of a blank to be below 0.3 percent; and 5. placing into a kiln for sintering, wherein the early period time of sintering is 6 to 15 minutes, the high temperature time is 15 to 30 minutes ,and the cooling time is 5 to 10 minutes. In the invention, the thin porcelain brick can be produced under the condition of traditional process equipment, and each item of performance index reaches or exceeds a porcelain brick standard GB/T4100-2006.
Owner:DEQING NABEL CERAMIC

A comprehensive treatment method for laterite nickel ore hydrometallurgy wastewater

The invention discloses a comprehensive treatment method of waste water from laterite-nickel ore wet smelting, which comprises the following steps: adjusting magnesium-containing waste water to be neutral so as to return the waste water to the ore-washing or leaching procedure for a process purpose, increasing the magnesium concentration of the waste water to above 50 g / L, performing heavy metal removal and manganese removal, performing negative pressure evaporation concentration, cooling crystallization, centrifugation separation, and drying to obtain magnesium sulfate heptahydrate, performing magnesium precipitation of the mother liquor after crystallization by sodium carbonate, separating basic magnesium carbonate, performing negative pressure evaporation concentration, cooling crystallization, centrifugation separation, and drying of the mother liquor after magnesium precipitation to obtain sodium sulfate decahydrate, or returning the mother liquor after magnesium precipitation directly to the iron-removing procedure of the nickel-extraction flow and to be used as a sodium source for iron removal by a sodium jarosite method. The method of the invention is simple and practical,has low cost, does not generate waste by-products, can both produce salable chemical products and reduce the production cost of the main flow for nickel recovery, and also prevents environment pollution.
Owner:广西银亿新材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products