Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

904 results about "Hematite" patented technology

Hematite, also spelled as haematite, is a common iron oxide with the formula Fe₂O₃ and is widespread in rocks and soils. Hematite crystallizes in the rhombohedral lattice system, and it has the same crystal structure as ilmenite and corundum. Hematite and ilmenite form a complete solid solution at temperatures above 950 °C (1,740 °F).

Beneficiation method for recycling specularite

The invention discloses a benefication method for recovering specularite. The method comprises the processes of primary grinding, grading, primary low intensity magnetic separation, and tailings discarding by primary high intensity magnetic separation; rough concentrate pre-classification by the primary low intensity magnetic separation and the primary high intensity magnetic separation, secondary grinding, secondary low intensity magnetic separation to obtain concentrates, secondary high intensity magnetic separation to obtain concentrates; and selective flocculation desliming secondary conducted on high intensity magnetic separation tailings (middlings), and anionic reverse flotation. The method further comprises the step of arranging a cylindrical slag separating sieve before the primary high intensity magnetic separation. With the advantages that the iron concentrate grade and the iron recovery are high, the loss of granular iron minerals is low, the mineral process flow is short, concentrates and tailings can be obtained in advance and the energy consumption of the benefication is low, the invention can be used not only for selecting specularite ores, but also for selecting weakly magnetic iron minerals, such as hematite, goethite, siderite, limonite, and the like.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES

Technological process for directly producing spongy iron from high-phosphor oolitic hematite

A technique method for directly producing spongy iron by using high phosphorus oolitic hematite belongs to the iron making field, and is characterized in that the high phosphorus oolitic hematite is added with a dephosphorizing agent and then is subjected to direct metallization reducing roast by taking coal as a reducing agent, low intensity magnetic separation for raising iron and reducing phosphorus is carried out, thus obtaining the substance with more than 90 percent of iron metal and phosphorus less than 0.08 percent. The invention has the advantages as following: (1) the utilization rate of resource is high, thus shortening the process flow of making raw steel material from iron ore, avoiding from polluting environment in concentrated ore sintering, pelletizing and blast furnace ironmaking in other methods, and having obvious environmental benefits, energy-saving and consumption reduction effects; (2) the technique method is simpler than other methods, the iron raising process and phosphorus reducing process can be completed simultaneously; and (3) coal power with low cost is directly taken as the reducing agent instead of the expensive coke, thus saving the cost in coking process and avoiding from polluting environment; the varieties are simple, the source is rich, the discharging amount of pollutants in the method is less than that in other methods and the pollutants are easy to deal with.
Owner:UNIV OF SCI & TECH BEIJING

Magnetic-gravity combined ore dressing technology for hematite

InactiveCN102773161AHigh recovery rateThe amount of ball grinding is reducedMagnetic separationIronstoneCrushed stone
The invention discloses a magnetic-gravity combined ore dressing technology for hematite, comprising the following steps of: carrying out dry magnetic separation and jigging gravity separation to obtain blast furnace lump ore, throwing the tailings of the lump ore, carrying out first-stage ore grinding, weak magnetic separation, strong magnetic separation and centrifugal gravity separation on middlings, and carrying out second-stage ore grinding, weak magnetic separation, strong magnetic separation and centrifugal gravity separation. According to the technology, part of qualified blast furnace lump ore (the iron grade is large than 54%) can be obtained in advance, the massive tailings (the iron grade is less than 12%) can be thrown out, the quantity of the ball-milled ore (the middlings) can be greatly reduced, and the grinding and separation energy consumption can be greatly reduced. The massive tailings which are thrown out can replace the macadam and the stone to be taken as the building material, so that the comprehensive utilization of the bulk quantity of the tailings resource can be realized, and the technology is prominent in emission reduction effect; and the whole ore dressing technology is the magnetic-gravity combined ore dressing technological process, so that the flotation reagents can not be consumed, the technology is very friendly to the work environment and the neighboring environment, the environment can be protected, the pollution of the beneficiation reagent to the environment caused by the flotation work can be avoided, and the technology is particularly suitable for the ore dressing of the medium and high-grade (the iron grade is more than or equal to 38%) hematite.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES +2

Tailing recovery process adopting preconcentration-roasting-regrinding and magnetic separation method

ActiveCN105233976AEfficient recyclingReduce the processing volume of subsequent grinding and sorting operationsMagnetic separationProcess efficiency improvementMagnetic separatorReducing atmosphere
The invention relates to a tailing recovery process adopting a preconcentration-roasting-regrinding and magnetic separation method. The tailing recovery process is characterized by comprising the following steps: concentrate extraction and tailing discarding are carried out by virtue of a preconcentration process which sequentially comprises first-section drum magnetic separation, first-section vertical ring magnetic separation, ore grinding, second-section drum magnetic separation and second-section vertical ring magnetic separation, so that a rough concentrate grade is increased, and a subsequent operation treatment amount is reduced; suspension roasting is adopted, so that a rotational-flow suspension state of rough concentrate materials in a suspension magnetization roasting furnace under the conditions of a high temperature of 500 DEG C and a reducing atmosphere can be ensured, and micro-and fine-grained hematite, siderite and limonite in the rough concentrate materials are converted to magnetic iron minerals; and meanwhile, multi-section continuous fine separation is carried out by virtue of a regrinding and fourth-section low-intensity magnetic separation machine, thus the good indexes of a concentrate grade of more than 65% and a metal recovery rate of 48-55% are obtained.
Owner:ANSTEEL GRP MINING CO LTD

Method for treating hazardous wastes

The invention discloses a method for treating hazardous wastes. The method comprises the following steps of: sending hazardous wastes and active carbon into a rotary kiln for roasting, discharging theroasted materials produced by the rotary kiln, sending the roasted materials to a side-blowing submerged combustion molten pool smelting furnace for smelting in a hot charging and hot delivering mode, sending the flue gas of the rotary kiln into a first flue gas treatment system, adding limestone and hematite into a side-blowing submerged combustion molten pool smelting furnace to adjust the slagtype, adopting natural gas as fuel, carrying out submerged molten pool smelting in an oxygen-rich side-blowing mode, crushing the slag produced by molten pool smelting by water to obtain glass-stateharmless slag, and sending the flue gas of the side-blowing submerged combustion molten pool smelting furnace into a second flue gas treatment system. The method for treating hazardous wastes has theadvantages of simple process flow, easy realization of high-level automation, relatively small occupied area, capability of realizing that the recovery rate of valuable metals in solid hazardous wastes containing heavy metal sludge, smoke dust, residues, waste catalysts and the like reaches more than 98 percent, which achieves the comprehensive utilization of resources and energy and the purposesof energy conservation and environmental protection.
Owner:CHINA ENFI ENGINEERING CORPORATION

Lean hematite stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique

The present invention relates to a lean hematite stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique which includes the following steps of: feeding lean hematite for a first grinding after which a first classification is given; feeding effluence of the first classification under medium intensity magnetism and high intensity magnetism; feeding concentrates into a classification between coarse and fine grits and discarding ore tailings; after the coarse and fine grit classification, feeding the coarse grit products into a coarse snail and fine grit products to concentration; feeding the fine grits from the coarse snail into a fine snail, the fine grits of which are gravity separating fine grits; feeding tailings from the coarse and fine snails into a second classification, the effluence of which goes back to medium intensity magnetism; feeding concentrated underflows into a coarse flotation and discarding the effluents; feeding the fine grits from the coarse flotation into a fine flotation and the tailings into a first sweeping flotation; fine grits from the fine flotation being the fine grits of the flotation and returning the tailings back to the coarse flotation; returning the fine grits from the first sweeping flotation back to the coarse flotation and feeding the tailings into a second sweeping flotation; returning the fine grits from the second sweeping flotation back to the first sweeping flotation and feeding the tailings into a third sweeping flotation; returning the fine grits from the third sweeping flotation back to the second sweeping flotation and discarding the tailings. The technique reduces the work load of the preparation equipment and the cost of mineral separations.
Owner:ANSTEEL GRP MINING CO LTD

Method for reducing phosphorus by chloridization separation-weak of high phosphor iron ore

The invention relates to a chloridizing segregation-low-intensity magnetic separation method for reducing phosphorus of a high phosphorus iron ore. A chloridizing segregation-low intensity magnetic separation process is adopted to realize iron increase and phosphorous reduction in the method. A chlorinating agent and a reducing agent coke are added to the high phosphorus iron ore and mixed evenly, then chloridizing segregation roasting is carried out in a roasting furnace; the roasted product is water quenched and ball milled, and then separated by a low-intensity magnetic field magnetic separator, thus being capable of obtaining an iron ore concentrate with the iron grade more than 80%, the iron recovery rate more than 85% and the phosphorous content less than 0.20%. The iron ore concentrate powder can be taken as a raw material for smelting pig iron after being pelletized. Additionally, with regard to high phosphorus iron ores which contain sulfur or contain sulfur and arsenic at the same time, such as hematite, hematite-limonite ore, oolitic hematite-limonite ore, hematite, siderite and the like, the product iron ore concentrate with the sulfur content less than 0.20% and the arsenic content less than 0.04% can also be obtained.
Owner:昆明晶石矿冶有限公司

Process for processing low grade hematite ore

The invention belongs to the technical field of preparing low grade hematite ore, in particular to a process for processing a low grade hematite ore. The process comprises the following steps: the ore is ground until monomer separation and then coarse and fine classification is carried out on pulp; coarse grain pulp is subject to reselecting, ferromagnetism and sieving to obtain a part of the concentrate; the fine grain pulp is conveyed to a mixing tank for separating sample, and then is conveyed to a second mixing tank to be mixed with medicine for size mixing; the mixture is pumped to a rough flotation column; the under flows of the rough flotation column is fed to a cleaning flotation column, the under flow of the cleaning flotation column is the ultimate iron ore concentrate; foam of the rough flotation column is conveyed to an one-stage scavenging flotation column by a pump; the under flow of the one-stage scavenging flotation column and the foam of the cleaning flotation column are mixed and return to the rough flotation column, and products of the one-stage scavenging flotation column are final tailings. The process has the beneficial effects of smaller occupation area by replacing a flotation machine with the flotation column, can recycle fine-grade valuable mineral effectively, improve the ultimate concentrate grade, provides reference significance for the mineral separation of the ore of the same type in China, and has obvious economic benefits and social benefits.
Owner:ANSTEEL GRP MINING CO LTD

Method for recovering copper, iron and silicon from copper smelting slag

InactiveCN104342561APromote growthMeet the needs of resource processingProcess efficiency improvementSlagCopper oxide
The invention provides a method for recovering copper, iron and silicon from copper smelting slag. The method comprises the following steps: (a) adopting oxygen to oxidize hot copper smelting slag to obtain mixed slag charge, wherein the temperature of the hot copper smelting slag is 1000-1350DEG C, and the mixed slag charge comprises hematite, copper oxide ore and quartz mine, and carrying out slow cooling processing on the mixed slag charge; (b) recovering the hematite from the mixed slag charge subjected to the slow cooling processing in the step (a) through flotation and magnetic separation, receiving a copper-contained product through activation flotation or leaching, and finally filtering tailings subjected to hematite recovery and the copper-contained product to obtain a silicon-contained product. The method provided by the invention has the advantages of short flow, simple technology, easiness in realization and control, wide use range, high practicality and the like and basically meets copper smelting slag resourceful processing requirements of the copper smelting industry. In addition, the method for recovering the copper, the iron and the silicon from the copper smelting slag, which is provided by the invention, does not generate secondary wastes, is free from pollution and has little energy input.
Owner:YANGGU XIANGGUANG COPPER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products