Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33 results about "Iron increased" patented technology

Method for reducing phosphorus by chloridization separation-weak of high phosphor iron ore

The invention relates to a chloridizing segregation-low-intensity magnetic separation method for reducing phosphorus of a high phosphorus iron ore. A chloridizing segregation-low intensity magnetic separation process is adopted to realize iron increase and phosphorous reduction in the method. A chlorinating agent and a reducing agent coke are added to the high phosphorus iron ore and mixed evenly, then chloridizing segregation roasting is carried out in a roasting furnace; the roasted product is water quenched and ball milled, and then separated by a low-intensity magnetic field magnetic separator, thus being capable of obtaining an iron ore concentrate with the iron grade more than 80%, the iron recovery rate more than 85% and the phosphorous content less than 0.20%. The iron ore concentrate powder can be taken as a raw material for smelting pig iron after being pelletized. Additionally, with regard to high phosphorus iron ores which contain sulfur or contain sulfur and arsenic at the same time, such as hematite, hematite-limonite ore, oolitic hematite-limonite ore, hematite, siderite and the like, the product iron ore concentrate with the sulfur content less than 0.20% and the arsenic content less than 0.04% can also be obtained.
Owner:昆明晶石矿冶有限公司

Iron-increasing and silicon-reducing reselection technique for mixed-type lean iron ore tailings

ActiveCN102909124AAchieve recyclingAchieve quality improvement and silicon reductionSolid separationMechanical material recoveryIron increasedRisk stroke
The invention discloses an iron-increasing and silicon-reducing reselection technique for mixed-type lean iron ore tailings, comprising the following steps of: strong magnetic roughing: putting mixed-type lean iron ore tailings through a strong magnetic separator with the magnetic field intensity of [U1] Oersteds to obtain roughed concentrate and roughed tailings; strong magnetic cleaning: selecting the roughed concentrate in the strong magnetic separator with the magnetic field intensity of 10000-20000 Oersteds to obtain magnetic concentrate and magnetic tailings; centrifugal selecting: putting the magnetic concentrate in a centrifugal concentrating machine with the rotating speed of 150-250r/min to obtain centrifugal concentrate and centrifugal tailings; and table selecting: selecting the centrifugal tailings through a table with the stroke of 8-10mm and the frequency of stroke of 250-300 times/min to obtain table concentrate and table tailings. According to the iron-increasing and silicon-reducing reselection technique, a great quantity of tailings is dropped through rough and concentrate double magnetic selection; the magnetic concentrate is selected by using the centrifugal machine so that irons are increased and silicon is reduced; and then the centrifugal tailings are selected by using the table so that the productivity is increased. The iron-increasing and silicon-reducing reselection technique has the effects of realizing iron increment and silicon reduction of the mixed-type lean iron ore tailings, incrasing the productivity of the iron ore to a great extent at the same time and providing an effective approach to iron increment and silicon reduction of the reselected concentrate for the mixed-type lean iron ore tailings.
Owner:YUXI DAHONGSHAN MINING

Dephosphorization and iron-increasing method of high phosphorus hematite by direct reduction

InactiveCN101984079ATo achieve the purpose of dephosphorization and ironSimple processProcess efficiency improvementIron increasedPotassium carbonate
The invention particularly relates to a dephosphorization and iron-increasing method of high phosphorus hematite by direct reduction, and the technical scheme comprises the following steps: mixing 60-83wt% of high phosphorus hematite powder, 10-15wt% of carbonaceous reducing agent, 6-15wt% of quicklime and 1-10wt% of additive uniformly, pressing the mixture into blocks, drying, reducing in a high temperature furnace under 1250-1350 DEG C, and keeping the temperature for 15-30 minutes; carrying out furnace cooling until the temperature is 600-800 DEG C, taking the reduction product out, naturally cooling, grinding and performing the magnetic separation to obtain pig iron particles. The additive is sodium carbonate, or potassium carbonate, or the mixture of the sodium carbonate and the potassium carbonate; drying is carried out under the condition of 110-120 DEG C until the weight of the mixture of raw materials is constant; and the high temperature furnace is a resistance furnace, or a rotary kiln, or a rotary hearth furnace, and the atmosphere in the high temperature furnace is neutral or weak-reductive. The invention has the advantages of short reduction time, simple process, high dephosphorization rate, high iron yield, less environmental pollution, recyclable residue and the like.
Owner:WUHAN UNIV OF SCI & TECH

Iron-increasing and silicon-reduction mineral separation method for iron ores

The invention discloses an iron-increasing and silicon-reduction mineral separation method for iron ores, which comprises the following steps of: producing TFe60 to 66 percent iron ore concentrate by the conventional mineral separation method; executing a cationic collector reverse-flotation process on the TFe60 to 66 percent iron ore concentrate to obtain cationic collector reversely-floated iron ore concentrate and middling; executing an anionic collector reverse-flotation process on the middling obtained by the cationic collector reverse-flotation to obtain anionic collector reversely-floated iron ore concentrate, and discharging tailings; and combining the cationic collector reversely-floated iron ore concentrate and the anionic collector reversely-floated iron ore concentrate to obtain final high-quality iron ore concentrate. The method has the advantages of high iron ore concentrate grade, high iron recovery rate, low fine iron mineral loss, low mineral separation energy consumption, low medicament consumption, and the capacity of solving the industrial problem of the difficult filtration of fine-grained concentrate caused by the addition of starch and greatly optimizing concentrate filtration, and can be used for the separation of magnetic iron ores as well as weakly-magnetic iron minerals, such as hematite and the like.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES

Iron increase and phosphorous reduction method for oolitic high phosphorus hematite

InactiveCN101440416AIncrease profitTo achieve the purpose of increasing iron and reducing phosphorusMagnetic separationPhosphoric acidIron increased
The invention discloses an iron-increasing phosphorous-reducing method for oolitic high-phosphorus hematite. The method comprises the following steps: (1) phosphorus-containing oolitic hematite is crushed till the particle size is not more than 0.25 millimeter, and then is added to a roaster; (2) a reduction chamber of the roaster is supplied with reduction gas, and crushed material is reduced for 10 to 60 minutes at a temperature between 700 and 1,450 DEG C in the roaster; (3) reduced mineral is isolated from oxygen, cooled to not higher than 100 DEG C and then magnetically separated; obtained coarse iron powder per ton is added with 1 to 1.5 kilograms of sodium silicate; the obtained coarse iron powder is ball-milled till the particle size is not more than 0.055 millimeter; obtained fine iron powder is immersed in acid solution with the concentration between 0.5 and 18 percent at normal temperature for 30 to 300 minutes; and the proportion of the acid solution to the fine iron powder is not less than 1:1; and (4) the fine iron powder is poured into a hydroextractor so as to reduce phosphoric acid. The method has the advantages of simple process, low requirement on the quality of raw material and the particle size of ore, no consumption of electric energy and high-quality coke, low energy consumption, high phosphorous reducing rate and high metal yield.
Owner:周玉平

Industrial production method for conducting iron increase and phosphorous reduction on high-phosphorus oolitic hematite

The invention relates to an industrial production method for conducting iron increase and phosphorous reduction on high-phosphorus oolitic hematite. The method comprises the steps that high-phosphorus oolitic hematite powder, bonding agents and dephosphorization agents are mixed uniformly and prepared into green pellets, and the green pellets are subjected to oxidizing roasting, so that pellets are obtained; oxide pellets or cold bonded pellets are placed in a two-section shaft furnace and induced into magnetite pellets containing gangue through a selective direct-reduction method; high-temperature CO-CO2 mixed gas is introduced into the bottom of a reduction section of the shaft furnace, and normal-temperature CO-CO2 mixed gas is introduced into the bottom of a cooling section; and the reduced magnetite pellets are crushed and fine ground, magnetized high-phosphorus ore powder is obtained and conveyed into a magnetic separator to be subjected to magnetic separation, and finally high-grade low-phosphorus iron ore concentrate and high-phosphorus tailings are produced. The industrial production method has the remarkable advantages of being suitable for large-scale industrial production, environmentally friendly, low in energy consumption, good in economic benefit and the like.
Owner:WUHAN UNIV OF SCI & TECH

Beneficiation method for iron increase and impurity reduction of low-grade iron ore powder

The invention relates to a beneficiation method for iron increase and impurity reduction of low-grade iron ore powder. The method comprises the following steps that firstly, water is added into iron ore powder to be subjected to stirring and slurry mixing, suspension ore slurry is achieved, and flowing is facilitated; secondly, a hydrocyclone is adopted for carrying out grading and concentrating in advance, sand setting is carried out for ore grinding, overflowing is carried out, and the sorting procedure is executed; thirdly, the hydrocyclone carries out overflow to carry out weak magnetic roughing, weak magnetic selection and weak magnetic scavenging, and high-grade weak magnetic concentrates are obtained; fourthly, weak magnetic scavenging tailings are subjected to screening and slag separating, and impurities are removed; fifthly, minus sieve ore slurry after slag separating is subjected to strong magnetic roughing and strong magnetic scavenging, and a strong magnetic separation concentrate is obtained; sixthly, the strong magnetic separation concentrate is subjected to grading and concentrating through the hydrocyclone, sand setting is carried out for ore grinding, overflowingis carried out, and the sorting procedure is executed; and seventhly, hydrocyclone carries out overflow, a spiral chute is adopted for roughing and selection, and the spiral chute concentrate can beobtained.
Owner:NANJING MEISHAN METALLURGY DEV

Low pressure casting integrally-sealed boiler with pressurization structure

InactiveCN106925755AAvoid mixingPressurization speed is smooth and uniformThermal insulationCrucible
The invention discloses a low-pressure casting integrally sealed furnace with a pressurized structure, which includes a boiler body, a base structure is installed at the bottom of the inner recess of the boiler body, a crucible is installed on the base, the crucible and the inner wall of the boiler body recess The interlayer is filled with heat-insulating material, and the riser pipe penetrates into the crucible through the middle part of the boiler cover. Lifting screw rods are arranged on both sides of the mouth of the riser pipe, and gears are installed on the lifting screw rods. A threaded structure is provided to connect with the threaded structure on the horizontal screw rod, one end of the horizontal screw rod is connected to the motor, and the outer wall of the boiler body is equipped with a metal shell structure. In this low-pressure casting integral sealed furnace with a pressurized structure, the inner wall of the crucible is made of graphite structure, which effectively solves the phenomenon of iron increase in molten metal, and the outer wall has a stainless steel metal reinforcement structure, which enhances the strength of the crucible and improves its compression resistance. The pressing speed is fast, the production efficiency is improved, the structure is simple, and the cost is low.
Owner:赵群英

Method for preparing ilmenite by ilmenite carbothermic-electrolysis

The invention discloses a method for preparing ilmenite by ilmenite carbothermic-electrolysis, and belongs to the field of electrochemical metallurgy. The method for preparing ilmenite by the ilmenitecarbothermic-electrolysis comprises the steps that ilmenite and reducing agent carbon are evenly mixed in proportion, and then the mixture is placed into molten oxide electrolyte; carbothermic reduction is carried out on the ilmenite in the electrolyte to obtain molten iron; graphite or inert electrode is used as anode, a graphite rod or an inert metal rod is inserted into the molten iron as cathode, and a constant potential or constant current method is adopted for electrolysis; electrochemical deposition is carried out on the cathode molten iron after electrolysis to obtain ferrotitanium alloy products; after the content of iron and titanium in the electrolyte is reduced to a certain value, a mixture of the ilmenite and the reducing agent carbon is added to the electrolyte again for thenext cycle; and when the titanium content in the molten iron increases to a certain amount or reaches the required ferrotitanium alloy ratio, the liquid ferrotitanium alloy products are discharged through a tapping hole in the bottom of a crucible, and the next cycle is continued. The method for preparing the ilmenite by the ilmenite carbothermic-electrolysis has the characteristics of short flow, simple operation, low equipment requirement, high titanium element recovery rate in the ilmenite, no waste residue and waste water, green and cleanness.
Owner:UNIV OF SCI & TECH BEIJING +1

Composite force field sorting machine for magnetite sorting and sorting method thereof

The invention discloses a composite force field sorting machine for magnetite sorting and a sorting method thereof. The sorting machine comprises a housing, wherein the housing is of a hollow verticalcolumn type cylindrical structure; a guide plate, a dispersing cylinder and a sorting cylinder are sequentially arranged in the housing from top to bottom; the axes of the dispersing cylinder, the sorting cylinder and the housing are on the same line; and a hollow coil capable of generating a magnetic field is arranged outside the housing. By using the device and the method provided by the invention, all that is needed is to adjust the feeding amount, the amount of flushing water, the height of the sorting cylinder, the magnetic field strength and the magnetic field position of the sorting machine according to the sorting process requirements, the adjustment and control of a particle distribution rule can be realized, thereby realizing sorting optimization. The composite force field sorting machine provided by the invention integrates the advantages of multiple sorting methods such as re-election, flotation and magnetic separation, not only can improve the concentrate grade of magnetite, but also ensure the recovery rate of magnetite; and the reverse flotation process of magnetite is effectively shortened, and thus the composite force field sorting machine is suitable for the process of reverse flotation iron increase and silicon reduction of magnetite.
Owner:TAIYUAN UNIV OF TECH

Microwave continuous suspension roasting method of enhancing high-phosphorus oolitic hematite for iron increase and phosphorus reduction

The invention discloses a microwave continuous suspension roasting method of enhancing high-phosphorus oolitic hematite foriron increase and phosphorus reduction. The microwave continuous suspension roasting method adopts a microwave continuous suspension roasting system and comprises the following steps that (1) the high-phosphorus oolitic hematite is crushed and finely ground into iron ore powder, and then the iron ore powder is poured into a feeding bin and is conveyed to a pretreatment fluidization device; (2) protective gas is introduced into a pretreatment feeding chamber and a pretreatment discharging chamber; (3) the iron ore powder is heated througha microwave cavity and then enters a reduction fluidization chamber; (4) the protective gas is introduced into a reduction feeding chamber and a reduction discharging chamber, and when thetemperature is lowered to 450-700 DEG C, reducing mixed gas is introduced into the reduction discharging chamber for reduction magnetization roasting, and a reduction material enters a cooler; and (5) the reduction material is cooled to thetemperature below 100 DEG C and enters a collection tank. By adopting the method disclosed by the invention, efficient and comprehensive utilization of high-phosphorus iron ores is realized, the iron grade and the recovery rate are high, and the phosphorus removal effect is remarkable; and resource and efficient development and utilization of the high-phosphorus oolitic hematite are realized.
Owner:NORTHEASTERN UNIV

High-phosphorus oolitic hematite high-magnetic reverse-flotation dephosphorization and desilicication mineral processing technology

The invention relates to a high-phosphorus oolitic hematite high-magnetic reverse-flotation dephosphorization and desilicication mineral processing technology used in the field of mineral processing. The technological processes include (1) mineral feeding, (2) mineral grinding, (3) first-stage high magnetic separation, (4) second-stage high magnetic separation, (5) regrinding, (6) dephosphorization roughing, (7) dephosphorization selection, (8) dephosphorization selection, (9) dephosphorization scavenging, dephosphorization scavenging, desilicication roughing, desilicication selection and selection scavenging. According to the technology, the high-magnetic tailing discarding-reverse flotation dephosphorization-reverse flotation desilicication double reverse flotation beneficiation combined method technology is adopted, dephosphorization and desilicication efficient composite collecting agents TL and BK-859 are adopted, the separation efficiency of high-phosphorus oolitic hematite is obviously improved, the problems of iron increase and phosphorous reduction of this kind of iron mine are successfully solved, and exploitation of the kind of resource becomes possible. By means of the high-phosphorus oolitic hematite high-magnetic reverse-flotation dephosphorization and desilicication mineral processing technology, high-phosphorus oolitic hematite beneficiation technical indexes reach the conditions that the iron ore concentrate grade is higher than 55.74%, contained phosphorus is lower than 0.12%, the iron recovery rate is higher than 62%, and the phosphorus removal rate is higher than 94%.
Owner:北京中矿东方矿业有限公司

Beneficiation process for reducing roasting, iron increase and impurity reduction of amphibole type oxidized ore

The invention belongs to the technical field of beneficiation, and relates to a beneficiation process for reducing roasting, iron increase and impurity reduction of amphibole type oxidized ore. The beneficiation process comprises the following steps that 1, broken amphibole type oxidized ore and pulverized coal are mixed; 2, water quenching is carried out after reducing roasting; 3, primary grinding is carried out; 4, primary magnetic separation is carried out, and secondary grinding is carried out on obtained concentrates; 5, secondary magnetic separation is carried out, and third-stage grinding is carried out on obtained concentrates; and 6, third-stage magnetic separation is carried out, fourth-stage magnetic separation is carried out on obtained concentrates, fifth-stage elutriation magnetic separation is carried out on concentrates obtained again through an elutriation magnetic separator, and the iron grade of obtained final iron ore concentrates ranges from 63% to 64%. The final iron ore concentrates produced through the method are high in grade and recycling rate, the grade and the recycling rate of the final iron ore concentrates are greatly increased, economic benefits are remarkable, and the flowage structure is simple and feasible.
Owner:MCC NORTH (DALIAN) ENG TECH CO LTD

Dephosphorization and iron-increasing method of high phosphorus hematite by direct reduction

InactiveCN101984079BTo achieve the purpose of dephosphorization and ironSimple processProcess efficiency improvementIron increasedPotassium carbonate
The invention particularly relates to a dephosphorization and iron-increasing method of high phosphorus hematite by direct reduction, and the technical scheme comprises the following steps: mixing 60-83wt% of high phosphorus hematite powder, 10-15wt% of carbonaceous reducing agent, 6-15wt% of quicklime and 1-10wt% of additive uniformly, pressing the mixture into blocks, drying, reducing in a hightemperature furnace under 1250-1350 DEG C, and keeping the temperature for 15-30 minutes; carrying out furnace cooling until the temperature is 600-800 DEG C, taking the reduction product out, naturally cooling, grinding and performing the magnetic separation to obtain pig iron particles. The additive is sodium carbonate, or potassium carbonate, or the mixture of the sodium carbonate and the potassium carbonate; drying is carried out under the condition of 110-120 DEG C until the weight of the mixture of raw materials is constant; and the high temperature furnace is a resistance furnace, or arotary kiln, or a rotary hearth furnace, and the atmosphere in the high temperature furnace is neutral or weak-reductive. The invention has the advantages of short reduction time, simple process, high dephosphorization rate, high iron yield, less environmental pollution, recyclable residue and the like.
Owner:WUHAN UNIV OF SCI & TECH

Iron-increasing and silicon-reducing reselection technique for mixed-type lean iron ore tailings

ActiveCN102909124BAchieve recyclingAchieve quality improvement and silicon reductionSolid separationMechanical material recoveryHybrid typeIron increased
The invention discloses an iron-increasing and silicon-reducing reselection technique for mixed-type lean iron ore tailings, comprising the following steps of: strong magnetic roughing: putting mixed-type lean iron ore tailings through a strong magnetic separator with the magnetic field intensity of 5000-10000 Oersteds to obtain roughed concentrate and roughed tailings; strong magnetic cleaning: selecting the roughed concentrate in the strong magnetic separator with the magnetic field intensity of 10000-20000 Oersteds to obtain magnetic concentrate and magnetic tailings; centrifugal selecting: putting the magnetic concentrate in a centrifugal concentrating machine with the rotating speed of 150-250r / min to obtain centrifugal concentrate and centrifugal tailings; and table selecting: selecting the centrifugal tailings through a table with the stroke of 8-10mm and the frequency of stroke of 250-300 times / min to obtain table concentrate and table tailings. According to the iron-increasing and silicon-reducing reselection technique, a great quantity of tailings is dropped through rough and concentrate double magnetic selection; the magnetic concentrate is selected by using the centrifugal machine so that irons are increased and silicon is reduced; and then the centrifugal tailings are selected by using the table so that the productivity is increased. The iron-increasing and silicon-reducing reselection technique has the effects of realizing iron increment and silicon reduction of the mixed-type lean iron ore tailings, incrasing the productivity of the iron ore to a great extent at the same time and providing an effective approach to iron increment and silicon reduction of the reselected concentrate for the mixed-type lean iron ore tailings.
Owner:YUXI DAHONGSHAN MINING

Combined use method of iron ore anion reverse flotation desulfurizing and silicon reducing agent

The invention discloses a combined use method of an iron ore anion reverse flotation desulfurizing and silicon reducing agent, which comprises the following steps: obtaining iron ore rough concentrates through magnetic selection or magnetogravity combined selection of iron ores achieving base unit dissociation through fine grinding, and adopting anion reverse flotation for the desulfurization andsilicon reduction of the obtained rough concentrates, wherein the agent comprises the components in the following types and dosages (computed according to the flotation feeding dry basis): 80-100g / t of ethyl xanthate, 950-1150g / t of NaOH, 450-600g / t of starch, 320-420g / t of CaO and 600-750g / t of anion reverse flotation collector. The method can remove sulfur as a detrimental impurity in the iron ore concentrates while extracting iron and reducing silicon of the iron ores without considering the influence of numerous foams generated by an oil foamer on an iron separation process, lowers the medicament cost, simplifies the process flow, is easy to implement in production, can be widely used for the iron increase, desulfurization and silicon reduction of magnetite separation plants and hematite separation plants, and can also be used for the desulfurizing and silicon reducing flotation of limonite, martite and semi-martite.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES

Method for reducing phosphorus by chloridization separation-weak of high phosphor iron ore

The invention relates to a chloridizing segregation-low-intensity magnetic separation method for reducing phosphorus of a high phosphorus iron ore. A chloridizing segregation-low intensity magnetic separation process is adopted to realize iron increase and phosphorous reduction in the method. A chlorinating agent and a reducing agent coke are added to the high phosphorus iron ore and mixed evenly, then chloridizing segregation roasting is carried out in a roasting furnace; the roasted product is water quenched and ball milled, and then separated by a low-intensity magnetic field magnetic separator, thus being capable of obtaining an iron ore concentrate with the iron grade more than 80%, the iron recovery rate more than 85% and the phosphorous content less than 0.20%. The iron ore concentrate powder can be taken as a raw material for smelting pig iron after being pelletized. Additionally, with regard to high phosphorus iron ores which contain sulfur or contain sulfur and arsenic at the same time, such as hematite, hematite-limonite ore, oolitic hematite-limonite ore, hematite, siderite and the like, the product iron ore concentrate with the sulfur content less than 0.20% and the arsenic content less than 0.04% can also be obtained.
Owner:昆明晶石矿冶有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products