Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

8604 results about "Iron ore" patented technology

Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in colour from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the form of magnetite (Fe₃O₄, 72.4% Fe), hematite (Fe₂O₃, 69.9% Fe), goethite (FeO(OH), 62.9% Fe), limonite (FeO(OH)·n(H₂O), 55% Fe) or siderite (FeCO₃, 48.2% Fe).

Beneficiation method for recycling specularite

The invention discloses a benefication method for recovering specularite. The method comprises the processes of primary grinding, grading, primary low intensity magnetic separation, and tailings discarding by primary high intensity magnetic separation; rough concentrate pre-classification by the primary low intensity magnetic separation and the primary high intensity magnetic separation, secondary grinding, secondary low intensity magnetic separation to obtain concentrates, secondary high intensity magnetic separation to obtain concentrates; and selective flocculation desliming secondary conducted on high intensity magnetic separation tailings (middlings), and anionic reverse flotation. The method further comprises the step of arranging a cylindrical slag separating sieve before the primary high intensity magnetic separation. With the advantages that the iron concentrate grade and the iron recovery are high, the loss of granular iron minerals is low, the mineral process flow is short, concentrates and tailings can be obtained in advance and the energy consumption of the benefication is low, the invention can be used not only for selecting specularite ores, but also for selecting weakly magnetic iron minerals, such as hematite, goethite, siderite, limonite, and the like.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES

Pre-selection method of low-ore grade magnetic iron ore

InactiveCN101502819ASolve the costSolve the problem of large tailingsSievingScreeningSeparation technologyMagnetite
The invention discloses a preselecting method of low-grade magnetic iron ore, comprising the steps of crushing the raw ore of the magnetic iron ore by coarse crushing, intermediate crushing and fine crushing operations, conveying to subject to ultra-fine crushing operation, and then crushing by a high-pressure roller mill, scattering the crushed product by a wet cylindrical sieve, conveying the ore on the cylindrical sieve to the vibrating sieve by a belt to perform wet gradation, conveying the ore on the vibrating sieve to a dry magnetic separator by the belt to discard the waste, returning the ore concentrate of the dry magnetic separator to the high-pressure roller mill to crush the ore concentrate again, perform magnetic separation and discarding tailings of the ore concentrate below the vibrating sieve and the ore concentrate below the cylindrical sieve in a wet coarse grain intermediate-field intensity magnetic separator, and selecting the coarse ore concentrate of the intermediate-field intensity magnetic separator by a grinding separation technology. The invention has the advantages that the invention selects quantities of qualified mine tailings by wet magnetic separation before grinding ore, reduces ore grinding work, reduces ore grinding energy consumption and has high system processing capacity; the invention can be widely used in magnetic ore dressing plant, and in particular suitable for treatment of preselecting low-grade magnetic iron ore with the iron grade lower than or equal to 22%.
Owner:SINOSTEEL MAANSHAN INST OF MINING RES +1

Beneficiating method for ilmenite

The invention discloses a beneficiating method for ilmenite, relating to a method for preparing titanium concentrate and iron concentrate by beneficiating crude ilmenite. The method is characterized in that: a beneficiating process of the method orderly comprises the following steps of: (1) grinding the crude ilmenite; (2) performing alkaline leaching pretreatment under the conditions of heating, oxygenating and pressurizing; (3) filtering pulp which is subjected to the alkaline leaching pretreatment; (4) washing filter residue and grinding; and (5) performing magnetic separation to obtain the titanium concentrate and the iron concentrate. In the method provided by the invention, the characteristic of iron and titanium compact symbiosis and the isomorphism occurrence characteristic of vanadium are damaged from the source of vanadium titano-magnetite by adopting the pretreatment process, so that mineral transformation of the vanadium titano-magnetite is realized, dissociation on lattice layers of titanium and iron is realized, high-quality iron concentrate and titanium concentrate with lower iron content are obtained through grinding and the magnetic separation process, an alkaline medium used in the pretreatment can be recycled, and the process has a small influence on environment and a bright application prospect.
Owner:BEIJING GENERAL RES INST OF MINING & METALLURGY

Method of refining iron ore from alkaline red mud and making gangue neutral

The invention relates to a method to select refined iron ore from alkaline red mud and neutralize mine tailings. The method consists of red mud pretreatment and technological process of preparing refined iron ore. The red mud pretreatment is that water is added into the red mud slurry discharged from aluminum factory; the red mud slurry is diluted to the solid concentration of 30 to 40 percent and then is screened and put into a low intensity magnetic separator for selecting ferromagnetic substance. The ferromagnetic substance is dehydrated and directly selected as the product. The remaining red mud is watered down to 30 percent solid concentration and put into a high intensity magnetic separator for magnetic separation and desliming. The obtained coarse ore is washed to a coarse ore settling tank or a thickener to be concentrated while the undercurrent is sent into a vacuum ceramic filter and a filter cake is roasted in a suspended magnetic roasting furnace. The roasted materials are crushed into a ball mill and then are milled. The water is overflown until 95 percent of the solid material granularities are less than 75m and then is treated by the third stage magnetic separation and the second flotation. The undercurrent is filtered by the ceramic filter, and then the refined iron ore with a purity of 58 to 65 percent is obtained. The refined iron ore is recycled from the red mud by the invention so as to fully employ aluminum ore, save resources and energy consumption and neutralize the whole red mud. The invention reduces environmental pollution and has good economic and social benefits.
Owner:SHENYANG XINBO IND TECH

Method for producing titanium and steel products by utilizing titanium and iron ores

The invention discloses a method for producing titanium and steel products by utilizing titanium and iron ores, which belongs to the field of technical innovation of mining, dressing and smelting full process flow of the titanium and iron ores. Ordinary blast furnaces are not suitable for the smelting of high-titanium and medium-titanium schreyerite; and schreyerite mining, dressing and smelting enterprises in Panxi region extract rich parts and discard poor parts, and discard weathered ore of submarginal ore which accounts for over 95 percent of that of raw ore and is taken as mining mullock. The method comprises the following step: directly reducing titaniferous iron concentrate dressed from the mining mullock (TiO2 is over 5 percent, and TFe is over 13 percent) of the schreyerite, electric furnace melt producing titanium slag and molten water with electric furnace melt components, and producing a titanium-rich material and rutile with the titanium slag through mineral dressing by a fire method; producing alloy molten iron with the molten iron through electric smelting and vanadium-chrome steel slag blowing; and producing various alloy steel products the alloy molten iron in a continuous casting and continuous rolling mode through the electric smelting. The recovery rates of titanium, iron and vanadium are improved to 80 percent from 3.86 percent, improved to 70 percent from 34.5 percent and improved to 70 percent from 20.90 percent respectively.
Owner:PANZHIHUA JINTAI HI TECH

Method for efficiently separating low-ore grade and complicated iron ore

ActiveCN101413057ALow grain sizeHigh content of water of crystallizationProcess efficiency improvementIronstoneIron powder
The invention provides an efficient separation method for low-grade and complex iron ores. The method is characterized in that the complex iron ores of different grades and species are classified, so as to obtain lump ores and mineral powder which are balled, dried and preheated; reduction roasting, cooling, ball milling, magnetic separation, ball milling and magnetic separation or reverse flotation are performed in turn, so as to obtain iron ore concentrate or reduced iron powder; classification treatment is to crush and screen the iron ores with iron-containing grade between 50 and 56 percent and then dry and preheat obtained ores; fine-grained mineral powder is ground, washed, ground, deslimed and separated so as to obtain the iron ore concentrate and slime containing 58 to 60 percent of iron; the slime which is washed, deslimed, and separated is dewatered and dried and is added to and well mixed additives, so as to be balled then; the iron ores with the iron-containing grade between 40 and 50 percent are crushed and screened so as to obtain the lump ores which are directly dried and preheated, while the fine-grained mineral powder is obtained through dry-type grinding and then is added to and well mixed the additives so as to be balled then; and the iron ores with the iron-containing grade between 25 and 40 percent are crushed and screened so as to obtain the lump ores which are dried and preheated, while the fine-grained mineral powder is subjected to grinding, gravity separation or high-gradient magnetic separation and reverse flotation, so as to obtain coarse iron concentrate powder which is added to and well mixed with the additives and then is balled.
Owner:CENT SOUTH UNIV

Special-purpose board for building and producing method thereof

The invention relates to a building product and the generating method thereof, in particular to a construction special-purpose plate and the manufacturing method thereof. The invention is made of the following raw material according to the parts by weight: 20 to 50 percent of thermoplastic resin comprising polyvinyl chloride, polyethylene and polypropylene, 50 to 80 percent of bulking agent comprising iron ore waste tailing sand, calcium carbonate and slag, and additive occupying 0.05 to 5 percent of the gross weight of the thermoplastic resin and the bulking agent and comprising plasticizer, heat stabilizer and lubricating agent. The product is made by adopting a stone molding and extrusion moulding way, no pollution is produced, no distortion exists, the product is moistureproof and fireproof, the processing waste and the disposed plate of the product can be recycled and newly processed to ensure zero waste, the damage to the environment cannot be caused, and the product is made into a hollow plate structure which has the advantages that the elasticity and the sound insulation effect are good and the heat transfer effect is good, therefore, the invention is very suitable for the heating of a geothermic pipeline, and the difficult problem that a wooden compound floor plate in the present market cannot be used for the heating of the northern geothermic building because of the distortion due to the heating or poor heat insulation heating effect is solved.
Owner:唐山金三顺装饰材料有限公司

Technique for processing mixed type iron ore

ActiveCN101468330AEfficient recyclingOvercome the complex system and the shortcomings of being easily interfered by other mineralsSievingScreeningHybrid typeGravity separation
The invention discloses a process for treating mixed-type iron ore. The process comprises the following steps: raw ore is crushed and then subjected to primary grinding and primary grading which form closed circuit grinding; after primary overflow is subjected to crudeness/fineness grading and coarse grains are sorted through a gravity separation device, spiral chute concentrate is fed into a fine screen with large mesh size, and undersize products are coarse-grain concentrate; after gravity separation tailings are subjected to tailings discarding through intermediate-magnetism sweeping, intermediate-magnetism sweeping concentrate, gravity separation middlings and oversize products are merged into coarse-grain middlings; the middlings are fed into an open-circuit grinding system consisting of secondary grading and secondary grinding and reground, and then return to crudeness/fineness grading; fine grains after crudeness/fineness grading are sorted through a magnetic separation device; magnetic separation concentrate is fed into the fine screen with small mesh size, and the undersize products are fine-grain concentrate, while the oversize products are fine-grain middlings which are directly fed into two-stage grinding so as to be reground; fine-grain concentrate and the coarse-grain concentrate are merged into final concentrate; and intermediate-magnetism sweeping tailings and the magnetic separation tailings are merged into final tailings. The process has the advantages of good flow stability, easy operation and capability of effectively recovering the mixed-type ore and fully utilizing mixed-type ore resources.
Owner:鞍钢集团矿业设计研究院有限公司

Beneficiation method for ultrafine fraction cassiterite

InactiveCN102631977AMineral processing method to solveEfficient recyclingFlotationWet separationCassiteriteMaterials science
A beneficiation method for ultrafine fraction cassiterite is characterized in that a swirler is used for desliming to obtain swirler settled sand and deslimed tailings; sulfide ores are separated from the swirler settled sand so that the sulfide ores and desulfurized tailings are obtained; iron is removed from the desulfurized tailings by means of magnetic separation to obtain iron ore concentrate and deironed tailings; flotation tin concentrate and flotation tailings are obtained after secondary roughing flotation, secondary scavenging flotation and tertiary blank concentration flotation for the deironed tailings; and a table concentrator is used for performing gravity concentration for the flotation tin concentrate to obtain tin concentrate, tin middlings and table concentration tailings. The grade of the tin concentrate is higher than 40%, the tin recovery rate of the tin concentrate is higher than 50%, the grade of the tin middlings ranges from 1% to 3%, the tin recovery rate of the tin middlings is higher than 15%, and the overall tin recovery rate of the tin concentrate and the tin middlings is higher than 65%. The beneficiation method for the ultrafine fraction cassiterite is high in recovery rate, low in production cost, high in tin grade and applicable to recovery of the ultrafine fraction cassiterite with the silt content ranging from 10% to 30%.
Owner:GUANGZHOU RES INST OF NON FERROUS METALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products