Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3513results about "Flotation" patented technology

Beneficiation method for recycling specularite

InactiveCN101428248AReduce consumptionReduce the number of equipmentDifferential sedimentationFlotationIronstoneSlag
The invention discloses a benefication method for recovering specularite. The method comprises the processes of primary grinding, grading, primary low intensity magnetic separation, and tailings discarding by primary high intensity magnetic separation; rough concentrate pre-classification by the primary low intensity magnetic separation and the primary high intensity magnetic separation, secondary grinding, secondary low intensity magnetic separation to obtain concentrates, secondary high intensity magnetic separation to obtain concentrates; and selective flocculation desliming secondary conducted on high intensity magnetic separation tailings (middlings), and anionic reverse flotation. The method further comprises the step of arranging a cylindrical slag separating sieve before the primary high intensity magnetic separation. With the advantages that the iron concentrate grade and the iron recovery are high, the loss of granular iron minerals is low, the mineral process flow is short, concentrates and tailings can be obtained in advance and the energy consumption of the benefication is low, the invention can be used not only for selecting specularite ores, but also for selecting weakly magnetic iron minerals, such as hematite, goethite, siderite, limonite, and the like.

Methods for removing heavy metals from water using chemical precipitation and field separation methods

A two-step chemical precipitation process involving hydroxide precipitation and sulfide precipitation combined with “field separation ” technology such as magnetic separation, dissolved air flotation, vortex separation, or expanded plastics flotation, effectively removes chelated and non-chelated heavy metal precipitates and other fine particles from water. In the first-step, the non-chelated heavy metals are precipitated as hydroxides and removed from the water by a conventional liquid/solids separator such as an inclined plate clarifier to remove a large percentage of the dissolved heavy metals. The cleaned water is then treated in a second precipitation step to remove the residual heavy metals to meet discharge limits. In the second precipitation step, any metal precipitant more effective than hydroxide for metal precipitation can be used. The invention improves metal removal, lowers cost because fewer chemicals are used, produces less sludge, and reduces the discharge of toxic metals and metal precipitants to the environment. Magnetic separation is preferred for the separation of particles precipitated in the second stage. Similar methods can be employed for separation of other particulates from water. Particulates can also be removed by causing them to adhere to particles of expanded plastic, forming a floc lighter than water, so that the floc can be removed by flotation.

Flotation apparatus for clarifying produced water

InactiveUS6337023B1Fast oil separationWiden meansLiquid separation auxillary apparatusSettling tanks feed/dischargeDissolved gas flotationEngineering
A dissolved gas flotation apparatus and process for removing oils and other contaminants from produced water generated in the production of crude petroleum and natural gas. The invention is particularly designed for offshore applications, where space is limited and natural gas is readily available. The invention includes a vessel for receiving and maintaining a liquid level therein and a circulating pump for introducing tiny flotation gas bubbles into the vessel. Natural gas is used as a blanket gas for the vessel and as a source of gas fed into the pump, wherein the gas is mixed with the pumped liquid. The liquid/gas mixture is transferred into the vessel, wherein the gas releases from the liquid, thereby forming tiny, finely dispersed gas bubbles. The tiny gas bubbles rise vertically through the vessel and attach themselves to the oil and other contaminants suspended in the liquid and buoyantly transport the oil and other contaminants to the top of the vessel, where the gas is released and either recycled back to the recirculating pump or transferred out of the vessel for further processing, and the oil and other contaminants are collected in a reservoir for recovery. The clarified water is removed from the vessel through a liquid outlet line located near the bottom of the vessel.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products