Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4782 results about "Aluminium hydroxide" patented technology

Aluminium hydroxide, Al(OH)₃, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite. Aluminium hydroxide is amphoteric in nature, i.e., it has both basic and acidic properties. Closely related are aluminium oxide hydroxide, AlO(OH), and aluminium oxide or alumina (Al₂O₃), the latter of which is also amphoteric. These compounds together are the major components of the aluminium ore bauxite.

Process for abstracting earth silicon, oxide of alumina and gallium oxide from high-alumina flying ash

A method for extracting silicon dioxide, alumina and gallium oxide from high-alumina fly ash relates to the technology fields of environmental mineralogy and material, chemical industry and metallurgy. The method comprises the main steps as follows: causing the high-alumina fly ash to react with sodium hydroxide solution; filtering the solution; introducing CO2 to the filtrate for full gelation; cleaning, purifying, drying, grinding and calcining the silica gel after gel filtration to obtain finished white carbon black; adding limestone and a sodium carbonate solution into the filter mass after the reaction and filtration of the high-alumina fly ash and the sodium hydroxide solution; ball grinding the mixture into raw slurry; dissolving out the clinker obtained by baking the raw slurry; subjecting the filtrate to deep desiliconization to obtain sodium aluminate extraction liquid; filtrating the sodium aluminate extraction liquid after subjecting the sodium aluminate extraction liquid to carbon dioxide decomposition; baking the aluminum hydroxide after washing the filter mass to form the aluminum hydroxide product; and extracting the gallium oxide from the carbon dioxide decomposition mother solution and desiliconized solution. The method has the advantages of low material price, simple operating procedures, low investment, low production cost, low energy consumption and less slag.

Preparation method for aluminum oxide by direct forming method

The invention discloses a preparation method for aluminum oxide by a direct forming method. The method is characterized in that the aluminum oxide is directly formed by a wet filter cake, wherein pore volume is 0.3-0.8ml/g; a specific surface area is 150-300 m<2>/g; and crushing strength is 30-120 N/particle; the preparation process comprises the steps: a) meta-aluminate containing aluminum or a strong acid salt compound is neutralized with a precipitator solution at a temperature of 30-80 DEG C and pH of 6-9; accessory ingredient is added in a neutralizing process; mixture is aged for at least 10min after neutralizing; b) prepared aluminium hydroxide gel is washed by de-ionized water for 4-10 times; dosage of the de-ionized water for each time is 10-40 times of mass of a dried substrate of prepared aluminium hydroxide; a hydrated alumina filter cake is obtained after washing and filtering; content of the aluminium hydroxide in the filter cake is controlled to be 5-50%; and c) the accessory ingredient is added into one or various liquid in the step a) and step b); the filter cake after washing is formed by a normal forming method; and the formed filter cake is dried at a temperature of 80-120 DEG C and calcined at a temperature of 450-1000 DEG C to obtain a finished product of the aluminum oxide.

Silicone rubber for composite insulator and preparation method thereof

The invention discloses a silicone rubber for a composite insulator, wherein the silicone rubber comprises the following raw materials in parts by weight: 30-50 parts of methyl vinyl silicone rubber A, 50-70 parts of methyl vinyl silicone rubber B, 25-50 parts of fumed silica, 100-130 parts of aluminium hydroxide, 1-6 parts of silane coupling agent, 0.2-2 parts of ultraviolet absorber, 2-6 parts of zinc oxide, 0.5-3 parts of triethanolamine, 0.2-1 parts of stearic acid, 0.5-2 parts of hydrogen-containing silicone oil, 0.2-1 parts of vinyl silicone oil, 0.5-3 parts of color masterbatch rubber, 2-6 parts of hydroxyl silicone oil and 0.5-1 parts of vulcanizing agent. The silicone rubber provided by the invention can achieve the following performances: the tensile strength is larger than 4 MPa; the breaking elongation is larger than 350%; the peel strength is larger than or equal to 12 KN.m<-1>; the shore hardness is 60+ / -5 degrees; the thermal aging tensile strength retention is larger than or equal to 90%; the anti-creep track passes a grade of 1A4.5; the flame retardance reaches a grade of FV-0; the average static contact angle is larger than 105 degrees; the electrical surface resistivity is larger than 2*10<15> omega; the dielectric constant is smaller than 3.8; and the dielectric loss angle tangent is smaller than 0.01.

A high flame retardant high thermal conductivity composite material component and its manufacturing method

The invention relates to a high-molecular composite material having performances of high heat conduction and high flame retardation, the invention is characterized in that the composite material does not contain any halogen or a non environmentally-friendly heavy metal fire retardant, the flame resistance is capable of reaching a UL94 V0 standard, simultaneously, the composite material has good heat conducting performance, the heat conduction coefficient is more than 0.5 W / m. DEG C. The composite material provided in the invention has good injection moulding performance, extruding performance and hot pressing performance. The composite material comprises the following basic components: 1) one or a plurality of metal hydroxides, such as aluminum hydroxide, magnesium hydroxide, zinc hydroxide and the like, wherein the weight content is 10-70%, 2) about 0.2%-60% of the weight content of expandable graphite flaky powder, the lamina size is more than 10 um, and the expandable coefficient is more than or equal to 20 times; 3) 15%-70% of the weight content of matrix resins, such as epoxy resin, organic silicone resin, phenolic resin, thermosetting polyester resin and thermoplastic resins of nylon 6, nylon 66, PBT, PP, HDP and the like. The composite material component of the invention can be directly used for radiators such as LED, electric appliances and electronic components, the heat can be radiated into colder environment so that the operating temperature of the electronic device can be reduced.

Method for preparing alumina by using fly ash

The invention discloses a method for producing alumina by disposing and utilizing industrial solid wastes, in particular to a method for preparing alumina by fly ash, comprising the steps as follows: the fly ash is mechanically activated; the activated fly ash, water and concentrated sulfuric acid react in a reaction kettle under the conditions of heating and pressurizing; the solid is separated from the liquid after the temperature of the reaction is reduced so as to gain aluminium sulfate liquid; the aluminium sulfate liquid is evaporated, concentrated and cooled so as to precipitate aluminium sulphate crystals; the aluminium sulphate crystals are dehydrated and decomposed to gain gama-Al2O3 and SO3; coarse gama-Al2O3 is dissolved in alkaline solution; after the solid is separated from the liquid, the pure sodium aluminate solution is gained; aluminum hydroxide crystal seed is added to the sodium aluminate solution so as to precipitate the aluminum hydroxide; the coarse gama-Al2O3 can be prepared by circularly dissolving the seed-precipitated alkaline solution after vaporization-concentration; the metallurgical alumina can be gained by baking the prepared aluminum hydroxide. The method adds no additive, can lead the alumina in the fly ash to be effectively leached out with the leaching rate more than 90% and saves the energy resource.

Heating-free non-alkali liquid accelerator for jetting concrete and preparation method of heating-free non-alkali liquid accelerator

The invention discloses a heating-free non-alkali liquid accelerator for jetting concrete and a preparation method of the heating-free non-alkali liquid accelerator. The liquid accelerator is prepared from the following components in percentage by mass: 30%-55% of aluminum sulfate, 3%-10% of aluminium hydroxide, 10%-18% of hydrofluoric acid, 8%-25% of magnesium salt, 1%-8% of alkylol amine, 0.5%-4% of a stabilizer, and 10%-33% of water. The preparation method is characterized by comprising the following processing steps: putting aluminium hydroxide into a reaction kettle; adding water to the reaction kettle, and stirring aluminium hydroxide into paste; slowly adding hydrofluoric acid, and when the temperature reaches 50-55 DEG C, adding aluminum sulfate to stir in batches; after hydrofluoric acid is completely added, adding residual aluminum sulfate and supplementing residual water, so as to obtain reaction liquid; adding the magnesium salt to the reaction liquid, and then adding the alkylol amine and the stabilizer, so that the solution becomes evenly mixed liquid. The accelerator disclosed by the invention has strong adaptability with cement, low energy consumption and good performance, and does not need to be heated in the use procedure.
Owner:刘翠芬 +1

Method for extracting aluminium oxide from coal ash

The invention provides a method to extract aluminum oxide from a fly ash, and relates to a technological method which is to extract aluminum oxide from the fly ash and comprehensively utilize the residue after extracting aluminum oxide. The invention is characterized in the method which is as follows: ammonium sulfate is mixed into the fly ash to sintering, and the solid is dissolved to obtain the solution containing aluminum-ammonium sulfate; the solution is crystallized to form solid aluminium-ammonium sulfate; solid aluminium-ammonium sulfate reacts with ammonia gas to obtain aluminium hydroxide and ammonium sulfate, and aluminium hydroxide and ammonium sulfate are washed and filtrated to obtain solid aluminium hydroxide; solid aluminium hydroxide is calcined to obtain aluminum oxide; ammonium sulfate can be circularly used after being evaporated in the liquid phase. The ammonium sulfate which is used by the method of the invention is weak acidic, the corrosiveness on the equipment is small, and the ammonium sulfate can be used circularly. The whole process is easy to industrial application. The requirement of the corrosion resistance on the equipment is low. The amount of the residue is small which is beneficial to the comprehensive utilization of the residue after extracting the aluminum oxide.
Owner:河南华慧有色工程设计有限公司 +1

Method for extracting alumina from coal gangue

The invention mainly relates to a method for extracting alumina from coal gangue. The coal gangue is ground, and then is calcined through a fluidized furnace and iron is removed through a magnetic separator, the coal gangue with the iron removal reacts with an acid to obtain an aluminum chloride solution without silicon impurities, the solution containing the aluminum is concentrated and crystallized and then is subjected to low-temperature calcination to obtain crude aluminum oxide, then the crude aluminum oxide reacts with sodium hydroxide to obtain a sodium aluminate mother solution, impurities such as iron and titanium are removed, an aluminum hydroxide crystal seed is added to the mother solution, and carbon dioxide gas is introduced for seed precipitation to obtain an aluminum hydroxide precipitate, and metallurgical grade alumina can be obtained through the calcinations. The method does not use any auxiliary agent at normal pressure, and uses hydrochloric acid and sulfuric acid to directly leach and extract alumina; the content of the alumina prepared by the method can reach more than 99 percent; and the method has the advantages of simple process flow, adequate raw material sources, less energy consumption, low cost, and high utilization value of the coal gangue.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products