Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3090 results about "Carbon nitride" patented technology

Carbon nitrides are compounds of carbon and nitrogen.

Preparation method for multi-hole carbon nitride photocatalytic material doped with sulphur

The invention discloses a preparation method for a multi-hole carbon nitride photocatalytic material doped with sulphur, belonging to the technical field of synthesis of photocatalytic materials. The preparation method comprises the following steps of preparing a super-molecule polymer through simple hydro-thermal treatment by taking melamine and trithiocyanuric acid as a raw material and taking water as a solvent, and burning in an inert atmosphere so as to obtain a three-dimensional network sulphur-doped multi-hole carbon nitride photocatalytic material. The preparation method provided by the invention has the advantages that simplicity and easiness in preparation are achieved, a method for burning a super-molecule polymer is adopted, any template agent and a surface active agent do not need to be added, a reaction system is simplified, the cost is low, the pollution of a reagent is slight, the reaction repeatability is good, a preparation condition is mild, the time consumption of a synthetic process is short, and the requirement on equipment is high; the multi-hole carbon nitride photocatalytic material doped with sulphur has excellent catalytic activity in a catalyzing hydrogen production reaction, and the hydrogen production rate of the material is 8.3 times and 5.2times that of a product obtained by burning melamine and trithiocyanuric acid under the same condition.
Owner:JILIN UNIV

Copolymerization modified graphite-phase carbon nitride nanosheet visible-light-driven photocatalyst

The invention discloses a copolymerization modified graphite-phase carbon nitride nanosheet visible-light-driven photocatalyst as well as a preparation method and an application thereof, and belongs to the technical field of material preparation and photocatalysis. The graphite-phase carbon nitride nanosheet visible-light-driven photocatalyst which adopts a nanosheet structure and synthesized with a copolymerization method is formed by taking urea and different small organic molecule monomers as precursors through the high-temperature copolymerization action. The prepared graphite-phase carbon nitride has a lower-dimension nanosheet microstructure and a proper band gap; compared with conventional bulk-phase carbon nitride, the graphite-phase carbon nitride effectively increases the specific surface area, enhances the utilization rate of sunlight, and has efficient photocatalysis hydrogen production performance in visible light. According to the copolymerization modified graphite-phase carbon nitride nanosheet visible-light-driven photocatalyst, the synthetic process is simple, the cost is low, the catalytic efficiency is high, the actual production requirements are met, and the photocatalyst has broad application prospects in the field of photocatalysis.
Owner:FUZHOU UNIV

High-entropy alloy binder phase-based nitrogen-containing hard alloy and preparation method thereof

The invention discloses a high-entropy alloy binder phase-based nitrogen-containing hard alloy, wherein the binder phase of the nitrogen-containing hard alloy is high-entropy alloy, and the hard phase of the nitrogen-containing hard alloy is uniformly distributed WC (Wolfram Carbide) and carbon nitride solid solution; the high-entropy alloy binder phase is at least four of iron, cobalt, nickel, chromium, aluminum, vanadium, titanium, copper, zirconium, molybdenum and manganese; the molar ratio of content of each element is 5-35 percent; the carbon nitride solid solution is at least one of Ti(Cx, N1-x) and (Ti, M1, ......)(Cx, N1-x); and M1 component in the (Ti, M1, ......)(Cx, N1-x) is at least one of W, Mo, Ta, Nb, V, Cr, Zr, Hf, Y and lanthanides. According to a preparation method of the high-entropy alloy binder phase-based nitrogen-containing hard alloy, the alloy comprises the raw material components in percentage by weight: 3-25 percent of high-entropy alloy binder phase, 45-96.9 percent of WC powder and 0.1-30 percent of carbon nitride solid solution powder, wherein the nitrogen element in the nitrogen-containing hard alloy is introduced through the carbon nitride solid solution. The preparation method of the multi-element composite carbon nitride solid solution-based nitrogen-containing hard alloy comprises the following steps of: (1) mixing through ball milling; (2) shaping; and (3) performing low-pressure sintering.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products